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1.1 Introduction

This document describes the hardware programming model used by Altirra, an emulator for the Atari 8-bit series
of home computers, including the 400, 800, 600XL, 800XL, 1200XL, 130XE, and XEGS models. Although the
emulator provides a virtual programming environment, it is intended to mimic the actual hardware. This
document attempts to describe the hardware in detail as the target to which the emulator aspires to imitate.
Some of this information has been collected from both official and unofficial sources, and some of it has been
determined by hand through testing on a real, still functioning Atari 800XL.

While I've spent a lot of time tracking down details myself, | have to acknowledge the substantial amount of
literature already available which provided background for this document. First and foremost, I'm indebted to the
technical staff behind the Atari Home Computer System Hardware Manual, which did a very good job of
describing the behavior and programming specifications for the official functionality in the Atari hardware, and
which should be considered required reading prior to this document. Similar shout-outs go to the authors of
Atari's OS Manual, which similarly documents the software side, and to lan Chadwick and his Mapping the Atari,
Revised Edition, which contains the most detailed and complete memory map of the Atari | know of.

If you have the time and inclination, please check out my Altirra emulator, available at the following web address.
You can also find the latest version of this manual there.

http://www.virtualdub.org/altirra.html
-- Avery Lee
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1.2 What's new in this edition

This release

+ ANTIC

[e]

o

Fixed a long standing off-by-one error in the VCOUNT cycle numbers from when the horizontal cycle
numbers were adjusted in this doc by -1, then adjusted back; the +1 was not reapplied to the
VCOUNT numbers.

Added information about precise timing of interrupts that occur during a WSYNC wait.

+  POKEY

o

Clarified serial input/output clock selection table and added captures of SIO clock in/out signals.

« CTIA/GTIA

[e]

Added horizontal/vertical sync timing information, including effects of the ANTIC hires bug.

- Cartridges

[e]

Corrected typo in banking bit range for AtariMax 8Mbit cartridges.

« Serial /0 bus

[e]

[e]

Added information about the 835 modem.

Expanded information about the 1030 modem.

« Disk Drives

o

o

o

(e}

810: Added note about rev. E FDC error codes.
1050: Added write protect error behavior.

Happy 1050: Added information about relations between Happy 1050 firmware revisions and base
1050 firmware revisions.

XF551: Added note about oversize firmware ROM and lower 4K CRCs.

« Parallel Bus Interface

[e]

[e]

Added interaction between Ultimate1MB extended memory and PBI memory overlays.

VBXE: Expanded MEMAC window description.

+ Reference

[e]

Corrected swapped serial input and keyboard overrun bits in register grid (the description was fine).

« Physical Disk Format

e}

Corrected error in DAM handling: post-1771 FDCs report bit 1, not bit 0, of the Data Address Mark.

« Analog Video Model

o

New section on synchronization and fake interlace behavior.
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2023-05-29 release

« Accessories

o Stack Lightpen.
- Cartridges

o  SIDE 2: Added missing CF select bit.
«  Serial I/O bus

o Fixed typo in protocol diagram that showed 10-18 ms for the ACK-to-data delay instead of 1.0-1.8
ms.

o 1030: Additional timing and dialing information.
» Disk drives
o Happy 1050: Detailed memory map and additional caching behavior.
o XF551: Added third firmware version between 7.4 and 7.7.
o Added 1450XLD parallel disk drive.
- Parallel Bus Interface
o MIO: Fixed description of $D1FE bit 4, which controls SEL and not MSG.
o MIO: Fixed inverted IRQ status bits.
o Added 1400XL/1450XLD V: and T: devices.

2022-11-29 release

- Disk drives
o Added info about XF551 firmware rev. 7.4 and 7.7 differences.
o Added US Doubler firmware information.
+ POKEY
o More details on initialization mode.
o Expanded on many audio topics.
o Rotated around some of the noise generator patterns to canonically start from initialization state.

o Cycle-precise timer behavior, including STIMER and AUDF1-4 write timing.

2022-07-07 release

- Fixed some typos referring to the PIA chip number as 6522 instead of 6520.
- CPU

o Fixed typo regarding B flag, which is pushed set on the stack for a BRK and cleared for IRQ/NMI.
« ANTIC

o Fixed typo in Display list > Suspended display list DMA: the last IR byte is repeated when display list
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DMA is disabled.

o Fixed incorrect /RNMI timing — it only needs to be asserted across one leading edge of VBLANK, not
two.

« Accessories

o Expanded information on light pens.

o Added ComputerEyes Video Acquisition System.
« Disk drives

o Added info on 1050 firmware revision E.
2022-01-03 release

« ANTIC
o Refresh row address counter is not cleared on reset.
« Disk drives

o  Clarified receive timing for Happy 1050 and added info about error handling when track buffering is
enabled.

o Added step timing for Speedy 1050.
« Parallel Bus Interface

o Corrected reserved ranges for PBI ($D6xx and D7xx instead of $D5xx and D6xx).
« Appendices

o Added appendix on physical tape format.

2021-10-02 release

«  System architecture

o Added brief overview of top-level system architecture.
- CPU

o Expanded discussion of flags.
« ANTIC

o Fixed erroneous starting cycles for playfield DMA in the text (the charts were correct).
«  POKEY

o Clarified some details about counter timing and distortion selection.

o Added section on two-tone counter timing.
« Accessories

o Note on XEP80 baud rate limits, row advance timing anomaly, and delete line behavior.
- Cartridges

o New section on SIDE 3.
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« Serial I/O bus
o New section on 820 Printer.
- Disk drives
o Removed Indus GT from list of disk drives that do not update PERCOM block on density detection.
o Expanded information on PERCOM disk drive firmware revisions.
« Physical disk format
o Added measured capture range for bit cell periods.
+ Reference
o Fixed swapped mode reference for the CHBASE register.

o Fixed missing POTGO register in register listing.
2020-10-23 release

- Disk drives
o Fixed swapped PBO and PB7 definitions for 1050 drives.
o Added behavior of various drives with no disk inserted.
o Clarified FDC handling of the head/side address field value.
o Added firmware revision information for 1050, Indus GT, and Percom RFD.
o Added Atari 815.
o Added Percom AT88-S1 and AT88-SPD.
« Internal devices
o Added Bit-3 Full-View 80.
o Added Atari 1090 80 Column Video Card.

2019-12-30 release

«  System control

o Fixed a typo in the PAL clock rate.
+ ANTIC

o Timing and behavior for the 400/800 System Reset NMI, even on XL/XE computers.
« GTIA

o  Clarified listed behavior for mode 9 combining with the fifth player (PF3) and for mode 11 regarding
unusual COLBK values.

« POKEY
o Fixed a typo in the keyboard layout for the Return key.

+ Disk drives
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o Fixed 810 port B entries being listed in reversed order.
o Added information on the 810 Turbo, Astra 1001 / The "One", and Amdek AMDC-I/II.
o Added info on specific behaviors of the 6532 RIOT and 177X/277X floppy drive controllers.
o Added info on Happy 1050 US Doubler emulation data corruption bug.
o Added info on XF551 format behavior.
« Internal devices
o Corrected VBXE blitter pattern width bitfield from 7 to 6 bits.
o Added section on APE Warp+ 32-in-1.

« New appendices for analog video and audio models.
2018-08-12 release

- CPU: Clarified exact rules for when a branch crosses a page.
« CPU: Fixed some erroneous illegal instructions in the 6502 opcode chart.
« ANTIC: Fixed wrong modes being listed for 512 byte / 1K character set size.
- POKEY: Additional information about high-pass filter timing.
«  GTIA:
o New section on NTSC and PAL artifacting.

o  Clarified behavior of GR.9/GR.11 with fifth player or background having non-zero luma for GR.9 or
hue for GR.11.

- Disk: Added information about task sequencing in disk drive controllers, I.S. Plate, sector interleaving
order used by disk drive firmware, XF551 FDC error codes, long sector behavior, 810 revision B
firmware, US Doubler hardware and commands, fixed incorrect sector ranges for XF551 back side
encoding.

2017-05-17 release

- Additional light pen information.

- Rewritten and expanded section on POKEY’s serial port hardware, including precise timing diagrams.
+  MyIDE-Il CompactFlash reset behavior.

« SX212 power-on behavior.

« New chapter on disk drives, including information on the Happy 810, Happy 1050, ATR8000, Percom
RFD-40S1, and the hardware for the 810, 1050, XF551, and Indus GT.

2016-03-25 release

+ 65C816 opcode table.
- 800 floating I/0O data bus.

« POKEY: Additional details on serial port behavior and keyboard and paddle scans.
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« Additional XEP-80 details.

« Controllers: CX-20 Driving Controller, CX-21/23/50 Keyboard Controller.

« New device info: Indus GT disk drive, Corvus Disk Interface, Pocket Modem.
« 810 and 1050 updates: long sector behavior, FDC status.

+ SIDE 2 corrections.

« Physical disk format: sector length behavior.
2015-07-05 release

«  System: Added information about floating PIA port B bits.

« CPU: Added new sections on new 65C816 functionality, undocumented 6502 opcodes, and opcode
tables.

- ANTIC: New sections on display timing, effects of extending the height of mode lines.
+ POKEY: Added info about keyboard conflicts.

+ GTIA: Added info about color generation.

- New chapter on cartridges: AtariMax, SIC!, SIDE, Corina, R-Time 8, Veronica.

- New chapter on Parallel Bus Interface devices: Black Box, Multi I/O.

< Additional device information: R-Verter, MidiMate, Ultimate1MB, VideoBoard XE.

« Additional XEP-80 commands.

« New appendices on polynomial counters and physical floppy disk formats.
2014-04-27 release

« CPU: Added section on 65C02 and 65C816 compatibility issues.
«  System Control: Added information on Parallel Bus Interface IRQs.
« POKEY: Added keyboard scan code table.

- GTIA: Updated with new table of player/missile/playfield priority conflicts and information about priority
conflicts in GTIA modes.

- Serial I/O: Now has its own chapter, including information about type 0-4 polling and device-provided
relocatable loaders.

- 850: Corrected errors in the description of the Write command, expanded description of the Stream
command, and added sections on the 850 bootstrap process.

« Disk: Added more details on 810 FDC controller status and command error conditions, and a new
section about disk anomalies used by protection mechanisms.

New section on XEP80 device.

- Reference: Updated to note guarantees on PAL register bits, and fixed errors in PACTL listing and
register quick reference.
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2013-05-14 release

+ ANTIC updates:

o Bus activity during WSYNC.

o Abnormal playfield DMA.
+  GTIA updates:

o Border behavior in mode 10.

o Player/missile shift details and lockup state.
+ POKEY updates:

o Polynomial counter patterns and timing behaviors.
2012-09-15 release

« Cycle numbers have been readjusted back so that cycle 0 is once again the missile DMA fetch.
« PIA corrections and interrupt behavior.
- CPU interrupt acknowledge timing.
- Parallel Bus Interface (PBI) information.
-  XEGS game ROM selection and keyboard sense.
+ ANTIC updates:
o Virtual playfield DMA
o Vertically scrolled jump instructions
o VSCROL vs. DLI timing
+ POKEY updates:
o Additional serial port initializing and timing information
+ GTIA updates:
o Lo-res mode 10 anomaly
- Additional peripheral documentation:
o CX-85 numerical keypad
o 850 Interface Module
o 1030 Modem
o 810, 1050, and XF551 Disk Drives
o Generic SIO protocol
«  Fixed backwards serial port and keyboard overrun bits in SKCTL reference.
« Fixed swapped Control and Shift bits in KBCODE reference.

« Removed incorrect location of international character set from memory map; this is an OS convention
anyway, not inherent in hardware.
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2010-11-23 release

« 5200 SuperSystem documentation.

- BRK anomalies, decimal mode, and | flag timing.

« ANTIC horizontal scrolling bug.

«  NMIST timing.

- Temperature sensitive POKEY and GTIA behaviors.
« Keyboard scan behavior.

- All scan line cycle numbers have been corrected to match the horizontal position counter (one less than
previous).
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1.3 Conventions in this manual

Number format

Unless specified, 6502 conventions are used. Numbers without a prefix are given in base 10 (decimal), numbers
prefixed by $ are given in base 16 (hexadecimal), and numbers prefixed by % are base 2 (binary).

In sections that describe Z80-based devices, Intel-style hex conventions are used instead with hex numbers
ending in H, i.e. 50H.

Checksums

Where CRC32 values are given for firmware data, the CRC32 polynomial and algorithm is the same as that used
by the Zip archive format, zlib, gzip, and the PNG image format. This is not to be confused with CRC32C, which
uses a different polynomial and produces different values for the same data.

Scan line timing

A significant number of hardware events with interesting timing occur relative to a particular offset within the
timing of a scan line, which is one horizontal sweep of the display CRT beam. Many activities within the
hardware occur at specific positions within a scan line and it is frequently useful to synchronize the CPU to scan
line timing. There are 114 machine cycles for each scan line.

There is no program visible horizontal position counter in the Atari hardware. To make it easier to refer to specific
offsets within a scan line, the cycles within a scan line are numbered from 0-113 in this manual, where cycle O
corresponds to the missile DMA at the beginning of a scan line. This is also approximately the beginning of
horizontal sync in the output video signal. Altirra also uses this convention in its debugger.

Deadlines

Sometimes it is necessary for the CPU to write to a hardware register before or after a particular deadline to
produce a desired behavior. For purposes here, A CPU write to a register on cycle N satisfies a requirement to
write by cycle N, before cycle N+1, and after cycle N-1. The cycle number is always in terms of the actual write
cycle from the CPU and not the write instruction. For instance, an INC NMIRES instruction that begins execution
on cycle 90 writes to NMIRES at cycles 95 and cycle 96, assuming no DMA contention.

Event timing

An event observable by a register is said to occur on a particular cycle when that is the first cycle in which a read
of that register reflects the event. For instance, if an interrupt bit activates in IRQST on cycle 95 of a scan line, it
means that reading the register on or prior to cycle 94 will not show the interrupt and reading it on or after cycle
95 will.

In most cases, event timing is described in this manual in terms of when it becomes visible to program
execution. For instance, interrupts are described according to when the 6502 can either sense a change in
interrupt status or begins executing an interrupt routine, and not when the IRQ signal on 6502 is asserted. An
exception is externally visible outputs, such as video, audio, and 1/O.

Active low and active high signals

In hardware designs, the signals may be designated as either active low or active high depending on the
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interpretation of the circuit design. The IRQ line on the CPU, for instance, is an active low signal and is activated
by pulling the signal line to the low state. On the other hand, the RD5 signal from the cartridge that maps $A000-
BFFF is active high, and is pulled up to +5V to signal that cartridge ROM is present.

To avoid confusion, this manual uses the terms asserted and negated to indicate the state of a signal line. An
active low signal is asserted in the low state, and negated in the high state; an active high signal is asserted in
the high state and negated in the low state.
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1.4 Concepts

Program visible behavior

A behavior or effect in the hardware which can be detected by a running program is program visible. Most of the
hardware behavior described in this manual is program visible. For instance, the serialization behavior of the
player/missile registers in GTIA is program visible because it can be detected through the collision registers. Any
program-visible behavior is detectable by program code and can therefore be checked to detect incomplete
emulation or broken hardware.

In contrast, a non program visible behavior cannot be detected by a running program: there is no way for an Atari
program to detect the colors produced by the GTIA priority logic unless external hardware provides a loopback
path.

Byte order (endian)

The 6502 is a little endian processor and therefore writes words with the lower order byte at the lower address of
the byte pair. The hardware follows the same convention: in the few cases where word registers exist or words
are fetched, the byte with the lower address is the lower order byte.

The opposite case is a big endian convention, where the higher order byte comes before the lower order byte.
The 6809 is an example of a CPU that uses big endian byte ordering, and this endianness is also used in
Percom block data because the convention originated in Percom's 6809-based disk drives.

Bit order

Within a byte, bit 7 is the most significant bit (MSB), and bit O is the least significant bit (LSB). A left shift moves
bits toward the MSB from the LSB, and is equivalent to multiplying by a power of two.

Whenever data in a byte represents graphics patterns, the left-most (MSB) pixel is displayed on the left side on
screen. Wider two-bit and four-bit pixels are stored with the same bit ordering within a pixel, allowing arithmetic
operations to function on those pixels.

A bit reversal or reverse bits operation flips the order of the bits, exchanging bits 0 and 7, bits 1 and 6, etc. This
has a few applications, including horizontally flipping 1-bit playfield or player/missile graphics, and compensating
for different shift orders in serial protocols.

Address alignment

The timing of certain CPU operations and the behavior of DMA by ANTIC can depend on the addresses of bytes
within a block of memory. The start of a block of memory is said to be aligned to a particular boundary if it is a
multiple of that value. For instance, the address $0800 is aligned to a 1K boundary because $0800 is divisible by
a 1K block size ($0400 bytes). The address $0A00, however, is not.

A memory block crosses an alignment boundary if the addresses of the first and last bytes result in different
values when divided by the alignment block size. A 40 byte block at $090A-0931 is contained within a 1K
boundary, whereas $07FF-0826 crosses the 1K boundary at $0800. There are two specific behaviors associated
with crossing such a boundary. One is that the 6502 sometimes requires an extra cycle when boundary is
crossed; another is that the 6502 or ANTIC may fail to cross an alignment boundary and wrap addresses within
the alignment block instead.

A page is a 256 byte block of memory aligned on a 256 byte boundary. Many operations in the 6502 require
accesses to specific pages or require extra cycles when indexing causes address arithmetic to produce a final
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address in a different page. Two 16-bit addresses have the same page if their first two hex digits are the same,
i.e. $A900 and $A947.

Read-only and write-only registers

Most registers in the hardware are either read-only or write-only: you cannot read a write-only register or write to
a read-only register. The address locations are also often shared between different read-only and write-only
registers, meaning that an attempt to use an unsupported memory operation will actually access the wrong
register. For instance, although the GTIA's HPOSPO register is set by writing to $D000, it can't be read at that
address; attempting to read $D000 gives MOPF instead.

There are a few notable exceptions where registers are read/write, such as CONSOL in GTIA and the data
direction registers in the PIA. Even in those cases, it is often that the read address does not exactly read back
the same register as the write address. For instance, reading CONSOL or PORTA doesn't actually read back the
values written to the write register; it actually reads the input port connected to the same signal as the output port
controlled by the write register, which means it can be different when the signal is being driven externally (e.g.
the Start button being held down).

Partial registers

In some cases, an address maps to registers that have less than 8 bits. In the case of a write, the extra bits are
ignored and lost. For a read, the extra unused bits are usually driven to a stable state by the chip, but this is not
always the case. For example, the R-Time 8 only drives the low four data bits and leaves the higher ones
floating. The PDVI register of the Parallel Bus Interface at $D1FF is a more extreme example, as it is actually a
composite of single status bits from each device, leaving the bits for non-present devices floating.

Shadow registers

Because not being able to read back write-only registers makes saving and restoring registers difficult, the OS
maintains a number of shadow registers in the kernel database to allow reading back the value of those
registers. By updating the shadow register whenever the hardware register is updated, the hardware register can
be "read back" by reading the shadow register instead. This is purely a software convention, however, and using
shadow registers is not required. It also requires an additional write for every update to the hardware register.

Strobe registers

Some hardware registers, such as POTGO and WSYNC, are strobe registers. These registers trigger an action
in the hardware when written by the CPU. The value written to the register is irrelevant and ignored, and the
strobe is activated even if the same value is written multiple times.

There are also registers that will trigger changes on a read cycle. The PIA data registers are examples, as
reading them clears pending interrupts. Similarly, some cartridge banking hardware only decodes addresses
without checking the read/write line and thus respond to a read by switching cartridge banks.

Latched (sticky) bits

Latched bits are activated when an event occurs and stay in that state until reset. Most of the interrupt status bits
in IRQST work that way, asserting IRQ on the CPU until the interrupt is acknowledged.

Incomplete address decoding (aliasing or mirroring)

Address decoding is the hardware process of determining if a memory address corresponds to a particular
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device. A device with full address decoding responds only to the specific addresses it is designed. For efficiency
reasons, many hardware devices on the Atari only partially decode addresses by checking a subset of address
bits. An example is the PIA, which only contains four addressable locations but is assigned a 256 byte region at
$D300-D3FF. Because bits 2-7 of the address are ignored, the PIA is mirrored 64 times within this address
space. This is also called aliasing, because two or more addresses serve as aliases for the same memory
location.

Although all of the mirror addresses of a hardware register are equivalent, there is typically still a canonical
address associated with that register, the address intended to be used. Using the canonical address of a register
is less likely to run into problems in expanded configurations. For instance, while $D3CO0 is a valid address to
access the PORTA register on stock hardware, it may be overlaid and repurposed by expansion hardware.

Overlapped decoding

As multiple circuits can independently decode addresses, it is possible for more than one device to decode and
respond to the same address, when they are on the same bus. As the MMU handles most decoding in the base
computer with non-overlapping address ranges, this is more common when the devices decode addresses
independently of the MMU or off of the same MMU select signal.

In the case of a write, all devices accept and respond to the write in parallel, using the same data. This occurs in
some stacked cartridge configurations, for instance, where the bottom cartridge does not exclude its register
ranges from the forwarded signals passed to the pass-through cartridge port.

Overlapping reads result in a tug-of-war between the devices over the data bus, with conflicts causing one
device to try to pull the data line down to O while the other to 1, and the result depending on which device wins.
This is considered an undesirable electric condition due to the two devices effectively tying +V to ground, but is
typically short-lived enough to avoid any ill-effects other than garbled returned data.

Power-on state

Individual hardware states may or may not be defined on power-on. The reset logic does ensure that circuits that
take a reset signal are reset on power-up, and critical states such as NMIEN in ANTIC and the OS ROM enable
are reset to ensure that the system can boot reliably. However, some states are not reset and are undefined on
power-on.

In practice, non-reset states do have some bias as to their power-on state. The strongest bias is toward their last
state, if the computer was powered off and then back on for a short period. The logic circuits will tend to keep
their last state for up to several seconds, with increasing chance that the state is randomly lost with each
second. If too much time passes and the system is powered up "cold", however, then the power-on state will
tend to be influenced by the circuit design, which will bias the circuit strongly toward a particular polarity. This is
the reason that dynamic RAM tends to power up with a characteristic stripe pattern that matches the memory
bank configuration inside of the chip. In a "lukewarm" boot where the system has been powered off long enough
for some but not all of the memory bits to have decayed, memory or hardware state bits will show a noisy mix of
the last powered state and the natural cold power-on state of the circuits.

In some other cases where the circuit is well-balanced, the power-on state may essentially be random noise,
such as with static RAMs.

Machine cycles (clocks)

Although most of the system actually runs at a faster rate, the smallest atomic unit of time for CPU execution is a
single cycle at approximately 1.8MHz. All CPU instructions must begin and end on a cycle boundary; all reads
and writes to registers must take place on a particular cycle. Unless otherwise specified, all cycles in this
document refer to machine cycles.
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Color clock

Much of the graphics system in the Atari runs at the speed of the color clock, which for NTSC machines runs at
the color subcarrier (3.579545MHz). A color cycle is completed every time the color clock advances. The highest
resolution possible for most graphics is determined by this clock, which produces 160 low resolution pixels
across at standard playfield width. High resolution displays run at twice this frequency, for a dot clock of 7MHz,
but only luminance effects are possible at this rate. Playfield and sprite positioning also occur at color clock rate.

There are two color cycles for every machine cycle. On PAL machines, where the color subcarrier is at a much
higher frequency, most of the faster processes within GTIA still occur at twice the machine cycle rate.

Machine-specific behavior

There are unfortunately a few cases in which marginal timing causes systems to differ in behavior. Examples are
the interrupt delay between POKEY and the 6502 and the behavior of the GTIA fifth player bit. In some cases
this can even manifest as temperature sensitivity, where a system will change behavior once a certain involved
chip has warmed up and display erratic behavior during the transition. It is best that code be written to avoid
dependency on such cases and to tolerate variance between systems.
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2.1 Basic architecture

The Atari 800 series of computers uses an 8-bit architecture based on the MOS 6502 CPU, assisted by several
custom chips and expandable by cartridge, serial, and parallel buses. Figure 1 shows the general architectural
block diagram.
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Figure 1: System Block Diagram
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CPU

The CPU is a MOS 6502, with an 8-bit data bus and 16-bit address bus, capable of addressing 64K of memory.
Some versions of the computer use a customized variant called a 6502C, which contains additional HALT logic
built-in; it is not to be confused with the later and different 65C02, a revised CMOS version of the 6502.

ANTIC

The ANTIC custom chip handles DMA, memory refresh, display timing, and playfield graphics decoding for the
system. It is the only other bus master in the system, halting the 6502 whenever it needs access to the memory
bus for DMA or memory refresh.

CTIAIGTIA

The GTIA custom chip handles graphics generation, combining playfield data from ANTIC with player/missile
graphics data and convert it to color video output.

The earliest computers may have a precedessor of the GTIA called the CTIA, which is missing some graphics
functionality. The majority of computers have the GTIA.

GTIA also handles some auxiliary signals such as joystick triggers, console buttons, and the console speaker.
POKEY

The third custom chip, POKEY, handles sound generation, serial I/O bus data, and keyboard and paddle input.
PIA (6520)

A 6520 Peripheral Interface Adapter provides joystick directional 1/0O, serial I/O bus control signals, and on the
XL/XE series, MMU control.

Some computers may use the 6820 or 6821/68B21 chips instead. They are pin- and software-compatible with
the 6520.

MMU

The MMU maps memory address ranges to RAM, ROM, hardware, and expansion ports. On later models, it also
supports banking in and out the ROMs and bank-switched expansion memory.

ROM

The operating system firmware is contained in a 10K ROM. Later models expand this to a 16K ROM containing
a larger OS including a self-test, and also add an 8K internal BASIC ROM and an 8K game ROM.

RAM

8K to 128K of RAM is present, depending on the model. 16K, 64K, and 128K are the most common on stock,
unmodified machines. Models containing more than 64K have the additional memory accessible as bank-
switched expanded memory.
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Cartridge port

The 800 contains two cartridge ports, a left cartridge port and a right cartridge port. Other models, including the
400, dropped the right cartridge port and only have the left port, which can support the same functions as the
right port. The cartridge ports can support both reads and writes through up to a 16K aperture.

Joystick ports

Either two or four joystick ports are present, depending on the model, with the earlier 400/800 having four ports.
The 9-pin joystick ports can support joysticks, paddles, driving controls, keypads, and even bidirectional parallel
1/0.

Serial 1/0 bus

The serial /0 bus supports multiple peripherals on a daisy chain, including disk drives, cassette tape decks,
printers, modems, and more exotic devices like MIDI ports. A standard communication protocol at 19200 baud
allows the computer to address individual peripherals sharing the SIO bus.

Parallel Bus Interface (PBI) | Enhanced Cartridge Interface (ECI)

The Parallel Bus Interface on later models allows external logic to interface directly to the address and data
buses of the computer for high-speed traffic, particularly for hard drives. The Enhanced Cartridge Interface (ECI)
is a variant on some later models which combines the cartridge port with a smaller extra port beside it to provide
an equivalent to the PBI.

2.2 Clocks

Machine clock (system clock)

The primary clock for the computer is approximately 1.77-1.79MHz, depending on whether the computer is made
for the NTSC or PAL video standard. NTSC runs slightly faster at 1.79MHz. The CPU and memory bus run at
this speed.

ANTIC preempts the CPU for DMA and memory refresh, stealing some cycles from the 6502 CPU. Thus, the
CPU runs at ~60-90% of the maximum speed, depending on the DMA requirements of the current display model.

Color clock

The color clock runs at 3.58MHz, or double the machine clock, and refers to the rate at which color pixels are
generated. It runs at the frequency of the NTSC color subcarrier and is also the rate at which the majority of the
pixel processing logic in GTIA runs. This is highest rate at which player/missile graphics and color playfield
graphics are produced.

On PAL computers, color pixels are still produced at twice machine clock rate, even though the PAL color
subcarrier is substantially faster (4.43MHz).

Hi-res graphics produced in ANTIC modes 2, 3, and F -- or GRAPHICS 0 and 8 in the OS -- are generated even
faster at double the color clock rate, using both phases of the color clock and thus an effective dot clock rate of
7.16MHz. Only the luminance portion of the playfield runs at this rate.
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2.3 Memory system

Memory bus

The computer has a single memory bus, with 16 address bits addressing 64K of RAM, and an 8-bit wide data
bus. Most chips are addressible directly through memory mapping, but only the 6502 and ANTIC can drive the
bus as bus masters, with the rest of the chips only responding to memory cycles in their address ranges.

The 6502 drives the bus the majority of the time and ANTIC will steal cycles with higher priority as necessary to
generate the display or refresh dynamic RAMs. Only the 6502 can issue write cycles, as ANTIC only issues read
or refresh cycles.

Memory type

Typically the system memory is composed of 4K x 1, 16K x 1, 64K x 1, or 64K x 4 dynamic RAM chips. Third-
party expansions, especially more modern ones, could use 256K chips or even SDRAM or SRAM.

Initial memory contents

The contents of memory upon power-up are undefined and should be treated as such. However, in some
circumstances they are deterministic or almost deterministic.

The first case is when the computer is powered up after being turned off for a long time. In this case, the RAM
will contain block patterns related to the internal organization of the DRAM memory chips. One possible pattern
is alternating $00 and $FF bytes.

The second case is if the computer is only turned off for a short period of time before being turned back on.
When the power is turned off, the DRAM contents will begin to degrade as the lack of regular refresh causes the
memory cells to lose state. This can take anywhere from seconds to minutes, and if power is restored in
between, the result will be a random mix of data from the last powered state and bits that have decayed to the
base state.

Floating data bus

Some addresses are not decoded and responded to by any hardware device, leaving the data bus in an
undriven state. These include $D100-D1FF and $D600-D7FF with no PBI devices installed. $D500-D5FF with no
cartridge, $4000-BFFF on the 400 with the standard 16K RAM configuration, and $C000-CFFF on the 400/800.

Depending on the model, this may either result in a pulled up or floating bus. On an XL and some XE machines,
there are pull-up resistors on the data bus which will force the bus to $FF for an unhandled read. On the 400/800
and other XE machines, these pull-ups are missing and the result is a floating data bus. The floating data bus
will tend to return the byte that was on the data bus from the previous cycle.

RAM does not drive the data bus during a refresh cycle, so the value on the floating data bus is not changed.
However, the floating data bus will reflect the value read by ANTIC if the last cycle was a DMA cycle from a
driven location.

When the CPU is suspended by a write to WSYNC, it repeats its current read cycle until the WSYNC condition is
cleared by ANTIC. During this time, the bus will repeatedly reflect the data at the location the CPU is trying to
read. This can be in turn picked up by ANTIC if one of its DMA channels is reading from an undriven location.
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Floating 1/O data bus

On the 800, the system ROMs, PIA, POKEY, and cartridges are connected to a secondary 1/O data bus that is
split by a pair of data bus transceivers from the main data bus that the CPU, ANTIC, and CTIA/GTIA are
connected to. The data buses are connected for some addresses that are not handled by any device, which
means that floating data can be read from the 1/O data bus separately from the main bus. This is only true on the
800; the 400, XL, XE, and XEGS have all devices on a single data bus.

The following address ranges are decoded for the secondary data bus: $C000-CFFF, $D100-D3FF, $D500-
FFFF. The address ranges for CTIA/GTIA ($D000-DOFF) and ANTIC ($D400-D4FF) are excluded and occur over
the main data bus only.

Reading an unhandled address on the 1/O data bus reads the floating bus data on that bus, which is only
affected by accesses to that bus. In particular, this means that reads and writes to main memory are not
reflected. Writes to any address on the I/O bus will float data on that bus even if no device responds to the write,
and this value can persist until the next read on the 1/0 bus even if other accesses occur to the main bus in
between.

As an example, if PEEK(49152) is executed from Atari BASIC running on a cartridge, the value read will most
often be 212 ($D4). This is because BASIC reads the supplied address with an LDA ($D4),Y instruction. The first
two cycles of this instruction read the instruction bytes $B1 and $D4 from the 1/O bus, the next two cycles read
the address 49152 ($C000) from RAM at $D4 and $D5 on the main bus, and the last cycle reads the $D4 value
from the floating data from the 1/0 bus at address $C000. (The value will vary in practice because ANTIC may
halt the CPU temporarily and read character data from ROM at $E000-E3FF during the instruction.) On the other
hand, if BASIC is loaded into RAM, the value will tend to reflect character data because the instruction fetches
will no longer occur on the 1/O bus.

Memory refresh

Because dynamic RAM requires periodic refresh to maintain contents, ANTIC does up to nine refresh cycles per
scanline to refresh memory. The number of refresh cycles varies depending on playfield DMA requirements
since playfield DMA has priority over memory refresh, while the full nine cycles are issued during vertical blank.
On each refresh cycle, one row of memory within each memory chip is refreshed. An internal counter within
ANTIC increments the refreshed row address with each refresh cycle. Depending on the model of ANTIC chip,
this counter is either 7 or 8 bits wide, refreshing 128 or 256 rows (the latter being necessary for some later used
memory chips).

While ANTIC is responsible for meeting DRAM refresh requirements solely by itself, any non-refresh access to
memory, either by ANTIC or the CPU, will also refresh the accessed memory row. The lowest address bits
determine the row. For the 130XE, both main and extended memory banks are refreshed together on any
access, though only one may output to the data bus.

On a refresh cycle, the normal data output from the memory chips is suppressed either by disabling the /CAS
signal (XL/XE) or by turning off buffers between the memory and the data bus (400/800). The memory decoding
logic or MMU also suppresses any /O or ROM mappings that would otherwise respond to the refresh address
supplied by ANTIC. As a result, no device will drive the data bus and it will either float or be pulled up.*

2.4 System Reset button

On the original 400/800, the [SYSTEM RESET] key is connected to the RNMI line on ANTIC, which then causes
an NMI to be issued to the 6502. The system NMI routine detects this condition via bit 5 of NMIST and invokes
warm start behavior.

[1] Itis possible to observe this by overlapping playfield and refresh DMA cycles. This is done by disabling playfield DMA via DMACTL
mid-scanline and pulling the data bus contents during refresh cycles into the line buffer.
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Starting with the 1200XL, this behavior was changed to use real reset logic instead. On the XL/XE models,
pressing the Reset button causes the reset lines to be pulled on the 6502, ANTIC, FREDDIE, and PIA. This
causes NMils to be masked, memory banking to be reset to default, and the 6502 to restart execution at the reset
vector. The RNMI line is permanently wired with a pullup to +5V and thus ANTIC will never signal a system reset
NMI on these models.

2.5 Peripheral Interface Adapter (PIA)

The 6520 PIA chip controls several miscellaneous functions within the Atari.
Addressing

The PIA occupies the $D3xx block of address space and exposes four register locations from $D300-D303. Only
the low two address bits are decoded, so each register is repeated 64 times.

Caution

Ultimate1MB overlays the $D380-D3FF half of the PIA region with its own registers.

110 ports

The PIA contains two 8-bit data ports, port A and port B. Each contains eight bits which are individually
switchable between input mode or output mode by a data direction register. Port A is controlled by control
register PACTL [$D302] and data register PORTA [$D300]; port B uses control register PBCTL [$D303] and data
register PORTB [$D301].

The data direction registers DDRA/DDRB and input/output registers ORA/ORB share addresses. In order to read
or write the data direction register, bit 2 of the port's control register must be set to 0, and to read or write the 1/0O
register, bit 2 must be set to 1.

Port A is connected to the direction lines of joystick ports 1 and 2. Port B is connected to ports 3 and 4 on the
400/800. The XL/XE models do not have these joystick ports, so port B is used for memory banking and LED
control instead.

1/0 direction

Each bit in the data direction register controls whether a bit is in input or output mode. A zero bit sets the bit to
input mode, while a one bit enables output for that bit. A bit in the output register is ignored when that bit is set to
input, but all bits in the input register are valid even for output bits. This behavior differs between port A and port
B. For port A, a bit set to output will read back as the logical AND of the output and external state. This is
sometimes used to mask off incoming bits; a bit will read as zero if either the PIA or an external device is pulling
the line low. For port B, any bit set to output always reads back the output state regardless of external influence.

Control lines

The interrupt and proceed lines of the SIO bus are connected to control lines CB1 and CAL1 of the PIA,
respectively. These are generally unused and disabled by setting bits 0 and 1 of PACTL and PBCTL to zero.
They are used by a few devices, though, most notably the 1030 Direct Connect Modem.

Control lines CB2 and CA2, however, are connected to the SIO command and motor control lines, respectively.
Bits 3-5 of PACTL/PBCTL are used to control the line state and should be set to 110 for a low state or 111 for a

Chapter 2 - System Architecture 32



Altirra Hardware Reference Manual Created by Avery Lee

high state.? The command line is pulled low by the Atari while a command is being sent to an SIO device; the
motor line is pulled low when a cassette tape deck should begin recording or playback.

The control lines can be used to issue an IRQ to the CPU, but this is seldom useful unless an external SIO
device is specially made to take advantage of this ability.

Typically the values $34 and $3C are written to PACTL/PBCTL,; this disables interrupts, raises or lowers the
CA2/CB2 line, and keeps the PORTA/PORTB register in data mode so the OS VBI routine can read the joystick
ports.

Interrupt status/enable bits

Bits 7 and 6 of PACTL and PBCTL indicate interrupt status of CA1/CB1 and CA2/CB2, respectively. They are
read-only and their values are ignored on write. A set bit indicates a pending interrupt, and if the interrupt is
enabled, an IRQ is also issued to the CPU.

Reading the input register for a port resets both interrupt bits for that port. This must be the input register;
reading the data direction register has no effect on interrupt status. This has implications for PIA interrupt
handlers, which must either require that ORA/ORB be active when PIA IRQs are active and unmasked or
temporarily switch from DDRA/DDRB to ORA/ORB to acknowledge the interrupt.

Unlike with POKEY, disabling interrupts does not clear the pending interrupt bit, and interrupts can be flagged by
edge detection even if interrupts are disabled. However, switching CA2/CB2 to output mode (1xx) does clear the
corresponding interrupt status (bit 6).

Reset behavior

The PIA is reset only on power on on the 800; it is also reset by the Reset button on XL/XE models. When the
PIAis reset, all registers are cleared to $00. This disables all interrupts, switches PORTA/PORTB to the data
direction register, and sets all peripheral port bits to input mode.

Floating inputs

On the XL/XE series, unused signal lines on PIA port B are not tied to ground or +5V and are therefore left
floating. This creates a condition where the value read on those bits via the PORTB register can drift over time.
Specifically, if unused port B bits are switched from outputting a 1 to input mode, they will read as 1 for a while
before eventually stabilizing at 0. If the last output value was a 0, the read bit in input mode will immediately be a
0 with no delay.

While this can cause port B to return random data, it is not usually a problem in practice because only unused
port B bits are affected and it only occurs for bits in input mode. On XL/XE systems, PIA port B is usually set to
output mode on all bits early in initialization and kept that way during normal operation.

The unused, floating port B bits for unmodified hardware are as follows:

« 1200XL: bits 1-6

«  600XL, 800XL, 65XE, 1450XL(D): bits 2-6

« 130XE: bit 6

+ XEGS: bits 2-5
The approximate time delay for the 1-to-0 transition, based on measurements on real hardware, is in the range
[2] [ATA82] 111.20 indicates that bits 4-5 should be set to 1. While this is the most useful setting, bits 3-5 can also be set to other values to

access six more control modes for the CA2 line. For instance, a value of 000 will reconfigure the pin for input, resulting in it being
passively pulled up to the true state.
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of 100-500 ms. Delays vary between individual bits, between systems and can even vary widely on the same
system. For instance, one system may show fairly consistent 160-190ms delays among its bits, whereas another
may show 300-500ms. In any case, it is slow enough that it can even be detected from BASIC.

The 400/800 has pull-ups on all port B lines and leaves none floating. Port A is not susceptible to this issue either
as it has internal pull-ups within the PIA.

For systems that have add-on extended memory, the additional bits used by the memory expansion are
expected to be connected to additional hardware such that they would always be pulled up, preventing those bits
from floating. This is notably not true for Ultimate1MB, though, since it implements extended memory by
shadowing writes to the PIA instead of physically connecting to the PIA's port B. Therefore, on a ULMB system, it
is possible to have bits that both float in input mode and control extended memory.

Spurious interrupts

Switching from output to input mode on the CA2/CB2 control lines can cause spurious interrupts to be flagged in
the control register. For CA2, this happens when positive edge detection is enabled (PACTL[3:5] = 010 or 011)
after the output has been pulled low recently (110). For CB2, an output low-to-high transition must be followed by
any input mode (PBCTL[3:5] = 110 to 111, then 0xx). When the input mode is selected, bit 6 will become set and
an IRQ will be requested from the CPU if the PIA interrupt is enabled (PACTL/PBCTL[3] = 1).

The CB2 case is particularly nasty as it corresponds to the SIO command line and the required transition is part
of the normal SIO protocol. Merely writing $08 into PBCTL can cause an infinite series of interrupts if an
appropriate IRQ routine is not registered to clear the unexpected PIA interrupt.

2.6 Bank switching

Bank switching allows the CPU to access more memory than would ordinarily be reachable via the 64K address
space dictated by its 16 address lines by multiplexing address regions based on bank switching registers. On the
XL series, this allows ROM to be selectively disabled, permitting access to 62K of memory.

ROM control
While the 400/800 use PIA port B to interface with joystick ports 3 and 4, the XL/XE computers only have two
joystick ports. The otherwise unused port B is instead used to enable and disable the system ROMs.

Bit 0 controls the OS ROM at $C000-CFFF and $D800-FFFF. A '1' bit enables the OS ROM.

Bit 1 controls the BASIC ROM at $A000-BFFF (except on the 1200XL, which has no built-in BASIC). A'0' bit
enables the BASIC ROM. Note that this is inverted from the OS ROM bit (bit 0).

Bit 7 controls the self-test ROM at $5000-57FF. A'0' bit enables the self-test ROM, if the OS ROM is also
enabled. If the OS ROM is disabled, the self-test ROM is also disabled regardless of the state of bit 7.

Pull-ups ensure that port B bits 0 and 7, and also bit 1 on non-1200XL machines, are held high if those bits are
switched to input mode on the PIA. Since the PIA switches all port bits to inputs on reset, this guarantees that
the OS ROM is enabled and the BASIC and self-test ROMs are disabled on system reset.

Clearing bit 0 and setting bits 1 and 7 disables all system ROMSs, enabling access to 62K of RAM. The 2K block
of hardware registers at $D000-D7FF cannot be disabled.

Writes to ROM

The MMU logic maps addresses to circuitry solely based on address. This means that any writes to addresses
that are currently assigned to kernel ROM, BASIC ROM, or cartridge ROM are ignored and do not affect the
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underlying RAM. It is not possible to “write through” the ROM as on some other platforms.

BASIC ROM overlap (XL/XE only)

The priority in the $A000-BFFF address range is cartridge ROM, then BASIC ROM, and then RAM. If both the
cartridge and BASIC ROM are enabled in that area, the cartridge is visible.

Game ROM (XEGS only)

On the XEGS, setting bit 6 of PIA port B to 0 enables the Missile Command game ROM at $A000-BFFF. This
has lower priority than the BASIC ROM and will therefore be overridden by BASIC if port B bit 1 is also set to O.

2.7 Extended memory

Starting with the XL models, a common way of expanding memory above the main 64K was to add additional
expanded memory with bank switching. This involves mapping an extended memory window as an overlay over
the $4000-7FFF region, allowing access to the extended memory 16K at a time. PIA port B is used to control the
extended memory window.

Window control

In most expansions, bit 4 of PORTB enables or disables the extended memory window. Bit 4 is inverted, so a 1
disables the window while 0 enables it. When the window is enabled, all reads and writes to the $4000-7FFF
region are directed to extended memory, and the main memory hidden underneath is untouched.

For a 128K system with 64K of extended memory, bits 2 and 3 select unique 16K extended memory banks. The
bits are ignored if the extended memory window is disabled, though the value of those bits is still kept. Larger
expansions use more bits in PORTB to select additional banks.

Note that the outputs from PIA port B control the extended memory window, so bits in PORTB are only effective
if configured as outputs. The XL/XE OS configures port B as all outputs by default, so normally all bits function. If
some hits are configured as inputs, however, they will not control extended memory functions. Typically there are
pull-ups on all port B bits used for memory mapping, so any bits configured as inputs will function the same as a
1 bit in output mode. This is essential to properly map the OS ROM on startup since the PIA clears port B to all
inputs when reset.

Separate ANTIC access

Some expansions have the ability to enable the extended memory window independently for ANTIC and CPU
access. For these, bit 4 enables the window for CPU reads and writes, while bit 5 enables it for ANTIC reads.
This makes it possible to display from extended memory while reading and writing from main memory at $4000-
7FFF and vice versa. There is still only one set of bank selection bits, however, so when both are enabled for
extended memory access the same bank must be used for both.

For expansions that do not support separate ANTIC access, the window applies to both ANTIC and the CPU:
either both access main memory or both access extended memory, controlled by the single enable bit.

Expansions labeled as COMPY typically support ANTIC access, while ones labeled as RAMBO do not, both
names coming from model expansions with those behaviors. The 130XE, the only stock computer with extended
memory support, also supports separate ANTIC access.
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Self-test ROM conflict

The self-test ROM can conflict with the extended memory window since it occupies $5000-57FF. When both the
self-test ROM and extended memory are enabled, the self-test ROM has priority in this region, with reads
coming from the self-test ROM and writes being discarded without modifying memory. This situation is not
possible with some expansions that disconnect the self-test ROM or reuse its bit while the extended memory
window is enabled.

Describing extended memory schemes

Extended memory schemes are often described in terms of the typical PORTB bytes that can be used to access
unigue banks. Most expansions preserve the function of bits 0 and 1 and use bits 2 and 3 for bank selection, so
the expansion can be described by the valid values for the high four bits. For instance, an expansion using bits
2-3 and 5-6 for bank selection would have unique banks for $8x, $Ax, $Cx, and $Ex, or 8ACE for short. Similarly,
an expansion using bits 2-3 and 6-7 would use $2x, $6x, $Ax, and $Ex, making its banking pattern 26AE.

Bit reuse

Some particularly large expansions reuse PORTB bits already assigned to mapping functions in the XL/XE
computers. Typically bit 0 (OS ROM) is kept, while bit 1 (BASIC) and bit 7 (self test) may be reused as banking
bits. Depending on the expansion, these bits may either be reassigned entirely, losing their original function, or
may only function as banking bits when extended memory is enabled. For instance, bit 7 may control the self test
ROM when expanded memory is disabled, but control a bank selection bit when the window is enabled, with the
self-test ROM forced off in that case.

Main memory aliasing
Some extended memory expansions may alias 64K of extended memory against main memory due to reusing
the same memory addressing. The result is that four of the extended memory banks address main memory such

that reading or writing the two address windows are equivalent. This is documented behavior for the ICD
RAMBO XL product, which aliases banks 0-3 of its 256K extended memory space against main memory.?

Expansion list

Table 1 lists some extended memory configurations. This list is not exhaustive; there are many other extended
memory configurations in use on actual hardware.

Type Configuration | Banking bits | Bank blocks Notes

130XE 64K + 64K 2,3 E Separate ANTIC access
192K (RAMBO) 64K + 128K 2,3,6 AE
256K (RAMBO) 256K 2,3,5,6 8ACE $8x banks alias main memory
320K (RAMBO) 64K + 256K 2,3,56 8ACE
320K (COMPY) 64K + 256K 2,3,6,7 26AE Separate ANTIC access
576K (RAMBO) 64K + 512K 1,2,3,56 8ACE
576K (COMPY) 64K + 512K 1,2,3,6,7 26AE Separate ANTIC access
1088K (RAMBO) | 64K +1024K |1,2,3,5,6,7| 02468ACE

Table 1: Some extended memory configurations

[3] [RamboXL]p. 14
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2.8 Miscellaneous connections

Cartridge sense (XL/XE only)

On the XL/XE series, the RD5 cartridge line is connected to the trigger 3 input (T3) of GTIA. The RD5 line
signals when the cartridge is supplying data in the $A000-BFFF range and therefore built-in memory should be
suppressed. Because RD5 is active high, the TRIG3 register in GTIA reads as a 1 (button not pressed) when
cartridge ROM is present and 0 (button pressed) when it is absent. This is used as a cartridge sense mechanism
by the XL/XE OS.

When a cartridge is disabled via bank switching and no longer presenting anything at $A000-BFFF, TRIG3 reads
asao.

The internal BASIC ROM does not affect TRIG3.

On a SECAM system with an FGTIA, the triggers are gated and only updated once each horizontal blank. This
causes delays in TRIG3 updating to match cartridge state changes and is a source of cartridge compatibility
problems. The TRIG3 cartridge sense can also be affected by the GTIA trigger latch function.

Keyboard sense (XEGS only)

On the XEGS, the trigger 2 input (T2) of GTIA is used to sense whether a keyboard is connected. If a keyboard
is connected, TRIG2 reads $01 (trigger not pressed), while it reads $00 otherwise. This is consistent with the
XL/XE series which has T2 disconnected and also reads $01.

1200XL option jumpers

The 1200XL has four option jumpers which are connected to unused pot lines. Option jumper J1 is connected to
POT4 and causes a self-test on startup if installed.*

2.9 Examples

Caverns of Mars

This game configures the upper four bits of port A as output in order to force them to zero, and fails to read the
joystick if this is not reflected in the values read.

MidiTrack lll
Monitors the CA1 (SIO proceed) input of the PIA for synchronization pulses without having IRQA1 enabled.
R-Verter handler software

Monitors CA1 (SIO proceed) and CB1 (SIO interrupt) inputs to the PIA without either IRQAL or IRQB1 enabled.

[4] [ATAXL] p.15
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WarGames

This game has a unique check to verify that $C000-CFFF is not populated with either RAM or ROM on an 800
system. If the routines in this region do not match the checksum for the 1200XL or XL/XE ver. 2 OS, the game
writes a byte to a single location in this range and then reads a series of addresses, checking whether the data
read from any of those addresses changes. Since the check routine is running from RAM, this relies on the write
being floated on the I/O data bus without being disturbed by the instruction fetches. The check will pass if
$C000-CFFF either contains RAM or returns floating I/O bus data, but will fail if it is ROM or main floating bus
data.

Atari Operating System Rev. A/IB

The RAM sizing test for OS-A/B tests for RAM by twice complementing the byte at the beginning of each 4K of
memory starting at $1000 and checking that the value read back matches each time. This test normally stops at
$C000 due to the floating I/O bus, relying on the instruction fetches from ROM to immediately overwrite the
written value on the I/O data bus. This test will also stop at $C000-CFFF if the range returns a constant value
due to either ROM or a pulled-up data bus. If the system is reconfigured so that the memory sizing code runs
from the main data bus or that $C000-CFFF returns floating data from a different bus, the sizing code can
incorrectly determine that range to be RAM.

2.10 Further reading

The definitive resource for anything involving the Atari memory map is [CHA85]. Appendix 16 provides
information on the new PORTB assignments for the 130XE.

[ATAXL] describes numerous modifications to the hardware and kernel in the 1200XL, such as the option
jumpers.

[ATA82] contains both functional and detailed schematics of the Atari 400/800 and is useful in tracing signal flow
between the custom chips.

For detailed programming information for the 6520 PIA chip, particularly modes not covered by the Hardware
Manual, consult [MOS76].
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Chapter 3
CPU

The 6502 chip is the CPU of the Atari. Used in many computers of the time and still in use as
a microcontroller in enhanced forms, both the official and unofficial behaviors of the 6502 are
well known. While the 6502 was later superseded by chips such as the 65C02 and the
65C816, the Atari 8-bit line continued using the original 6502 until the very end.

Note that there is some confusion as to the precise chip used in the Atari 8-bit series. The
original 400/800 use the NMOS 6502, along with a handful of extra circuitry to provide the
ability to halt the CPU for ANTIC DMA; this was later replaced with the 6502C, a custom
version that contains the HALT logic built-in. This should not be confused with the CMOS
65C02, which is an enhanced 6502 with additional instructions and which was never used in
the Atari 8-bit line.

The 6502 contains many nuances and unusual undocumented behaviors which are crucial to
understand when programming to the metal on the Atari 8-bit series. For the sake of brevity,
the basic architecture of the 6502 will be omitted here to allow more space for documenting
these corner cases.
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3.1 Flags

Flags are stored in the P register of the CPU and both capture and store persistent state across multiple
instructions. Most instructions on the 6502 implcitly set at least one flag during execution of their main operation,
commonly the N and Z flags. Some of the flags also modify global CPU behavior, such as the interrupt mask (1)
flag.

Address calculations never use or modify the flags. Thus, the addition in the absolute indexed addressing mode
abs,X neither uses the carry flag as input nor modifies it based on the resulting address, nor is it subject to
modification from the decimal (D) flag.

Carry (C) flag (bit 0)

The carry flag extends many arithmetic and logical operations by one bit to allow processing of 16-bit or larger
quantities in multiple 8-bit operations. For arithmetic operations, it supplies the carry or borrow input into bit 0
and receives the carry or borrow output out of bit 7, and similarly supplies inputs and captures outputs for shifts
and rotates.

The 6502 notably differs from some other CPUs in the polarity of the C flag for subtract operations. On the 6502,
C=1 indicates no borrow in/out for a subtract operation, and C=0 indicates a borrow. Thus, SBC is commonly
preceded by SEC when a pure subtraction with no borrow in is desired. This interpretion is consistent with
implementing subtraction by adding the one's complement (all bits inverted or XOR'd with $FF).

Zero (Z) flag (bit 1)

The zero flag is set when the result of an operation is zero or all bits cleared, and clear otherwise. It is purely a
result bit.

Interrupt mask (1) flag (bit 2)

The | flag determines whether maskable interrupts are blocked or masked. If it is cleared, then IRQs are handled
normally; if it is set, IRQs are "masked" and ignored by the CPU. NMls are not affected by the | flag, as they are
non-maskable.

The | flag is automatically set on reset to prevent the CPU from receiving stray IRQs until it has completed
hardware and software initialization.

Decimal (D) flag (bit 3)
The D bit (bit 3) in the processor status register activates decimal mode in the 6502. When set to 1, the ADC and

SBC instructions perform BCD correction. CMP, CPX, CPY, INC, DEC, and indexed addressing are not affected.

NMOS 6502s do not clear the D flag automatically, so it must be cleared on reset. It should also be cleared in an
interrupt handler if the interrupt code uses ADC or SBC and mainline code may use decimal mode.

Break (B) flag (bit 4)

Bit 4 of the processor status register is the (B)reak bit and is used to indicate whether an IRQ or a BRK
instruction caused the IRQ routine to be run. It is set if the trigger was an BRK and cleared if it was a IRQ.

Contrary to both official and unofficial documentation, the B bit does not actually exist in the P register.
Attempting to clear bit 4 of P and reading the result back always gives a 1 bit. The only time the B flag is visible
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is when the 6502 pushes the P register on the stack as part of interrupt handling. In that case, the P value
pushed onto the stack will have bit 4 set for a BRK and cleared for an IRQ/NMI. In rare circumstances, it is
possible for an NMI to piggyback on a BRK and the NMI vector can also be invoked with bit 4 set on the flags on
the stack.

On the 65C816, bit 4 is reused as the index size (X) bit in native mode.
Unused flag (bit 5)
The 6502 does not use bit 5 of the P register. It can't be cleared and always reads as a 1 when pushed to the

stack with the PHP instruction or by interrupt entry.

On the 65C8186, bit 5 is reused as the (M)ode bit in native mode.
Overflow (V) flag (bit 6)

The V flag is set during arithmetic operations to indicate if a signed overflow has occurred, where the result is
outside of the -128 to +127 range of a byte and has been truncated. It is cleared otherwise. This is sometimes
implemented as the XOR of the carries out of bit 6 and bhit 7. It is uncommonly used, being changed only by add,
subtract, compare, and flags-specific operations. It also captures bit 6 of the source for a BIT instruction.

There is another uncommon use of the V flag, to capture an event signaled on the Set Overflow (SO) input on
the CPU. Asserting SO results in the V flag being set asynchronously to regular code execution. This is not used
on the main computer, but some peripherals using 6502-family CPUs do use this facility.

Negative (N) flag (bit 7)

The N flag is usually set when the result of an operation is negative, i.e. the sign bit in bit 7 is set. More
generally, it is usually copy of bit 7 of the result. There are a couple of exceptions, such as BIT setting the N flag
to bit 7 of the source data rather than of the bitwise AND operation.

3.2 Decimal mode

Decimal correction

Decimal arithmetic in the 6502 works by correcting each nibble after addition or subtraction. For addition, 6 is
added if the nibble result exceeds 10; for subtraction, 6 is subtracted if the result is negative. The carry between
the low and high nibbles is computed before this correction, so the correction can never cause a double carry.
For instance, for $0F + $0F, an intermediate result of $1E is computed, and the correction then produces $14.

Flags computation

All flags are computed after carries are propagated between nibbles but before decimal correction occurs.®

For addition, the C flag is set whenever there is a carry out from the high nibble, allowing for extended precision
decimal arithmetic. For instance, $99 + $01 = $00 with carry set. For subtraction, it is cleared for a borrow.

The Z flag is set when the intermediate result is $00, before decimal correction. Example: $FF + $01 = $66, with
Z set.

The N flag is also set according to the intermediate result, to match bit 7. Example: $99 + $01 = $00, with N set.

5] [13010]
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The V flag is set when the carry between bit 6 and bit 7 is different than the result carry, or alternatively, when
there is a signed overflow in binary arithmetic.

65C02 behavior

ADC and SBC take an additional cycle in decimal mode on the 65C02.

The 65C02 computes the N, V, and Z flags differently in decimal mode. All three are computed the same way as
if the same result were achieved in binary mode. That is, N is set if bit 7 of the result is set; Z is set if the result is
$00; V is set if the carry from bit 6 to bit 7 is different than the carry flag.

ADC produces the same results for invalid BCD encodings on the 65C02 as it does on the 6502, but SBC can
produce different results.®

65C816 behavior

The 65C816 computes decimal flags and results the same way as the 65C02, regardless of the state of the E
flag. This means that the flags can be tested to distinguish a 6502 from a 65C816 in the same way. No extra
cycle is taken as with the 65C02.

Unlike the 65C02, the 65C816 produces the same accumulator results as the 6502 for an SBC instruction with
invalid opcodes.

3.3 Cycle timing

Clock speed

On an NTSC machine, the 6502 runs at exactly half the speed of the color clock, or 1.789773MHz. There are
exactly 114 cycles per scan line and 29,868 cycles per frame. On a PAL machine, the 6502 runs at 2/5ths the
color subcarrier frequency, or 1.773447MHz; there are still 114 cycles per scan line, but 35,568 cycles per frame.

DMA contention

On occasion the Atari's custom chips must fetch data from memory. This is known as Direct Memory Access
(DMA), and when it occurs, the 6502 is blocked from the memory bus while ANTIC does a read cycle. This
phenomenon slows down execution of code on the CPU and is known as DMA contention. All DMA in the Atari is
related to the display and therefore the graphics setup determines the reduction in CPU performance. For NTSC,
the highest rate at which the CPU can run is 92% (1.65Mcycles/sec); the standard Graphics 0 display reduces
this to 64% (1.14Mcycles/sec). PAL runs noticeably faster since all display related DMA runs only 5/6ths as
often.

Dead memory cycles

The 6502 uses the memory bus on every cycle without exception. Most of the time this is for useful work and
therefore leads to very efficient bus utilization. There are cases, however, when these memory cycles are wasted
cycles, such as:

« The second cycle of an implied mode instruction. (TXA)

« The ALU cycle of a read-modify-write instruction. (INC abs)

[6] [6502Dec]
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« The second-to-last cycle of a zero page indexed read or write. (LDA zp,X)
- The second-to-last cycle of an absolute or indirect indexed write. (STA abs, X)

« The second-to-last cycle of an absolute or indirect indexed read that crosses a page boundary (AND
abs, Y).

- Conditional branches that cross a page boundary (BNE).

A memory transaction is issued during these dummy cycles and therefore these dead cycles cannot be
overlapped by DMA — the CPU must still be halted. For the most part these cycles are harmless, as the Atari is a
fairly safe platform where reads to hardware registers seldom have side effects. There are a few cases in which
this does matter and indexing should be used with care:

« Accessing the PIA ($D300-D3FF), because reads from the data registers will clear pending interrupts.

« Accessing the cartridge control region ($D500-D5FF). Some cartridges use this region to switch banks
and will respond to both reads and writes.

« Accessing PBI devices ($D100-D1FE and $D600-D7FF), which may also have read-sensitive regions.

« Any access with a read-modify-write instruction, since the extra cycle is a write cycle (except on the
65C02 or 65C816 in native mode).

Crossing page boundaries

The 6502 attempts to optimize indexed reads by issuing a speculative read before it has adjusted for a possible
carry in the high byte. If no carry is required, a cycle is saved. Otherwise, if a carry is required, it will retry the
read with the correct address. For example, given the following sequence:

LDX  #3$80
LDA  $20F0,X

...the 6502 will read $2070 first, and then retry with the correct address $2170. The only modes that have this
behavior are: abs, X, abs,Y, and (zp),Y. The zp,X, zp,Y, and (zp,X) modes do not need to index outside of zero
page and wrap from $00FF to $0000 without an extra cycle; (zp),Y does not incur an extra cycle for using $FF as
the zero-page address. The (abs) mode, unique to JMP, also lacks the extra clock due to the well-known bug on
the NMOS 6502 of accessing $xxFF and $xx00.

Writes, on the other hand, cannot be done speculatively as a wrong guess would trash an unrelated memory
location. Therefore, stores using the abs, X, abs,Y, and (zp),Y modes always take the extra clock cycle. The first
clock cycle is a speculative read and the second clock cycle is a write with the correct address. Read-modify-
write instructions also always take an extra clock cycle, indexed or not, except that the dummy cycle is a write
cycle.

Branches that cross a page boundary also have this behavior, doing a read with an incorrect address high byte
first, and taking four clock cycles instead of three. No additional cycle is taken to cross a page boundary for a
non-taken branch, a JMP, JSR, RTI, or RTS instruction, or any other non-branch execution.
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Note

A branch crosses a page boundary when the addition of the signed branch offset changes the high byte of
the PC. This means that a page crossing occurs if the target is on a different page from the address of the
next instruction, not from the address of the branch instruction. For instance, a BCC $80C0 instruction at
$80FE crosses a page because it is branching from $8100 to $80C0, even though the branch instruction
itself is entirely within the same page as its target. Similarly, a BEQ $8110 instruction at $80FE does not
cross a page. This happens because the branch offset is added after the PC has already been
incremented for both bytes of the branch instruction.

3.4 Interrupts

Level-based vs. edge-based interrupts

IRQs on the 6502 are level triggered interrupts, which means that the interrupt request is a continuing condition
that is active as long as the IRQ line is asserted. This facilitates delayed response to the IRQ as the 6502 will
eventually respond to the IRQ as long as the device continues to assert the IRQ line. It also allows for
multiplexing as multiple devices can assert IRQ and the 6502 will execute the IRQ handler repeatedly until all
interrupts are handled. However, this also means that the interrupt condition must be cleared on the device or
else the IRQ handler will continue to execute. It also means there is no memory of an interrupt event — if an
interrupt request occurs while IRQs are masked in the 6502 and is revoked before they are unmasked, the IRQ
handler will not execute.

NMls, on the other hand, are edge triggered and are one-time event rather than a condition. Once the NMI signal
is asserted, the 6502 will execute the NMI handler at the next opportunity. If a second NMI is requested before
the first one is acknowledged, the NMI handler will only run once and the other NMI is lost.

Interrupt timing

The 6502 does not abort or resume instructions and can only respond to an interrupt on instruction boundaries.
This means that longer instructions can increase interrupt response delay. The longest standard instruction
possible on the 6502 is seven clocks, which can be due to a (zp),Y access crossing a page boundary, a read-
modify-write instruction using abs,X mode, or a BRK/interrupt. A delay of 8 cycles is possible with undocumented
read-modify-write instructions that use indirect indexed or indexed indirect mode, such as opcode $13. However,
much longer delays can occur if a store to WSYNC [D40A] is performed, which can lengthen an instruction by as
much as a hundred clock cycles. Use of WSYNC should be avoided if display list interrupts or other time-critical
interrupts are active.

Clearing | with an interrupt pending

If an interrupt is already pending but is blocked by the | flag, clearing the | flag with a CLI or PLP instruction will
result in the interrupt occurring at the end of the next instruction, and not immediately after the clearing
instruction. For instance, given the following code:

CLI
NOP

The pending interrupt will not be serviced until the end of the NOP instruction. This does not happen with the RTI
instruction; an IRQ can be serviced immediately after an RTI that clears the | flag.
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Setting the I flag with an interrupt pending

Because of pipelining within the 6502, it is possible for the last cycle of a SEI or PLP instruction to execute
immediately after the 6502 begins to acknowledge an IRQ. When this happens, the IRQ routine begins
executing before the next instruction, and the curious result is that an IRQ executes with the pushed flags on the
stack having the | bit set. The most common way to hit this behavior is using the following sequence to dispatch
pending IRQs at a well-defined time:

CLI
SEI

This does not happen with the RTI instruction, which changes the flags earlier in the instruction. This effect
occurs with CLI+SEI and CLI+PLP pairs; it does not occur with CLI+RTI, PLP+[SEI/RTI/PLP], or
RTI+[SEI/RTI/PLP], for which no IRQ is dispatched even if one is pending.

Taken branch delay

A taken relative branch delays interrupt acknowledgment by one cycle: a case in which the earliest opportunity to
respond to an interrupt is immediately after the branch instead is delayed to the next instruction. This occurs for
any Bcc instruction which does not cross a page boundary. The effect does not occur if the branch instruction
crosses a page (4 cycles), or for any other control flow instruction such as JMP, JSR, RTS, or RTI.

Overlapping interrupts

It is possible for the 6502 to first begin executing the seven-cycle interrupt sequence for an IRQ and then jump to
the NMI vector instead if an NMI occurs quickly enough.

For IRQ+NMI conflicts, this behavior simply leads to faster acknowledgment of the NMI. However, it also has
unfortunate consequences for the BRK ($00) instruction. The BRK instruction is essentially the same as an IRQ
except that the flags byte pushed on the stack has the B flag set. Because of this, it is possible for an NMI to
hijack the BRK sequence in the same way. When this occurs, the NMI vector is invoked with the B flag set on the
flags byte on the stack. Thus, robust handling of BRK instructions requires it to be checked for in both the IRQ
and NMI handlers.”

There are no issues with an overlapping IRQ and BRK instruction. However, when multiplexing the IRQ vector
for both IRQ and BRK, the BRK instruction must be serviced before the handler exits. For multiplexed IRQs, the
handler can service one IRQ at a time, relying on the hardware to keep IRQ asserted as causing the handler to
re-execute until all IRQs are serviced. This is not true for BRK, which will be lost if not serviced.

On the Atari, this effect occurs if a BRK instruction begins execution at between cycles 4-8 of a scan line where
either the DLI or VBI is activated.

[7]  This effect is covered in detail in [VIC09], under 6510 Instruction Timing. The effect of an IRQ on a BRK is arguably not a bug, as | can
find no program-visible effects: the BRK executes as expected, and the IRQ is then acknowledged afterward assuming that the IRQ
line is still asserted. This does require that the IRQ handler check BRK first, though, which usually doesn't happen.
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105] 106 107] 108] 100| 110 111 12| 13| o 1| 2| 3| 4] 5| 6] 7| 8] of 10 u| 12 13] 14] 15/ 16] 17] 18] 10| 20| 21| 22| 23]
IRQ LSR abs PHA LDA#im | STAabs NMI PHA
RQ | LSR abs | PHA |LDA#m | NMmi | PHA LDA#M |
RQ |LSR abs | PHA [LDA#m [NmI [ PHA [LDA#m |
RQ | LSR abs | PHA [N | PHA [LDA#m |
IRQ | LSR abs [ PHA [N [ PHA LDA#m |
IRQ |LSR abs [ PHA [N [ PHA LDA#m |
[IRQ | LSR abs [N | PHA | LDA #im
RQ |LsR abs [N [ PHA [LDA#M |
[IRQ | LSR abs [N [ PHA [LDA#m |
IRQ |LSR abs [N [ PHA |
[IRQ | LSR abs [N | PHA |
RQ | LSR abs [N |
IRQ | LSR abs [N |
IRQ |LSR abs PHA | LDA#im |
N | PHA | LDA#m |STA LD |
[N |PHA [LDA#im |STA [LDA#m |

Figure 2: Effects of overlapping IRQ/NMI timing

The table above shows how the 6502 responds to IRQ and NMI being asserted at varying offsets from each other. When the IRQ occurs sufficiently before the NMI, the
6502 completes the pending interrupt sequence or current instruction before beginning the interrupt sequence for the NMI. This always entails a minimum of at least 7

cycles for the interrupt sequence and 6 cycles for the first instruction of the IRQ handler (LSR abs, 6 cycles). Unusual behavior starts when the IRQ sequence begins on
cycle 4, which causes the NMI to be lost entirely. Afterward, the IRQ sequence that would begin at cycle 5 or later is taken over by the NMI, resulting in the NMI handler

executing earlier than usual. The exact same timing occurs with BRK instead

of IRQ.
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Consecutive interrupts

The 6502 cannot acknowledge an interrupt immediately after executing an interrupt sequence. This includes
BRK, IRQ, and NMI. The first instruction of the IRQ or NMI handler is always executed, regardless of any
pending interrupt. The one case where interrupt sequences will execute back-to-back is if the first instruction of
the interrupt handler is a BRK instruction. Because the BRK instruction is piggybacked on top of the interrupt
logic, a pending interrupt can hijack the BRK instruction to run the interrupt handler instead.

3.5 Undocumented instructions

Out of the 256 possible 8-bit opcode encodings, 151 correspond to defined instructions. Due the way that the
6502 decodes instructions, some of the other 101 opcodes activate strange internal behaviors instead of being
ignored or raising an interrupt.

Table 2 shows the complete opcode table for the 6502. Opcodes in gray are undocumented instructions that
appear to have stable behavior; opcodes in yellow are undocumented instructions that appear to be unstable.
Opcodes in red lock up the 6502 until reset.

X0 x1 X2 x3 x4 x5 X6 X7 X8 X9 XA xB xC xD XE XF

0x |BRK |ORA [KIL SLO |NOP |ORA |ASL |SLO |[PHP |ORA |ASL |ANC |NOP |ORA |ASL |SLO
(zp,X) (zp,X) |zp zZp zp zZp #imm #imm |abs abs abs abs

1x |BPL ORA [KIL SLO NOP |ORA |ASL SLO CLC ORA [NOP |SLO NOP |ORA |ASL SLO
rel (zp),Y (zp),Y zp,X |zp,X |zp,X |zp,X abs,Y abs,Y |abs,X |abs,X |abs,X |abs,X

2x ISR AND  |KIL RLA BIT AND |ROL |RLA PLP AND |ROL |ANC BIT AND |ROL |RLA
abs (zp,X) (zp,X) |zp zp zp zp #imm #imm |abs abs abs abs

3x BMI AND  |KIL RLA  [NOP |AND |ROL |RLA |SEC |AND |NOP |RLA [NOP |AND |ROL |RLA
rel (zp),Y (zp),Y zp.X |zp,X |zp,X |zp,X abs,Y abs,Y |abs,X |abs,X |abs,X |abs,X

4x |RTI EOR (KIL SRE |NOP |[EOR |LSR |SRE |PHA |EOR |LSR |ASR (JMP |[EOR |LSR |SRE
(zp,X) (zp,X) |zp zp zp zp #imm #imm |abs abs abs abs

5x |BVC |[EOR (KIL SRE [NOP |[EOR [LSR SRE |CLI EOR |NOP |SRE |NOP |[EOR [LSR SRE
rel (zp),Y (@zp),Y zp,X |zp,X |zp,X |zp,X abs,Y abs,Y |abs,X |abs X |abs,X |abs,X

6x |RTS |ADC (KIL RRA |NOP |ADC |ROR |RRA |[PLA ADC |ROR |ARR |JMP |ADC |ROR |RRA
(zp,X) (zp,X) |zp zp zp zZp #imm #imm |(abs) |abs abs abs

7x |BVS |ADC (KIL RRA |NOP |ADC |ROR |RRA [SEI ADC |NOP |RRA |NOP |ADC |ROR |RRA
rel (zp,Y) (zp),Y zp.X |zp,X |zp,X |zp,X abs,Y abs,Y |abs,X |abs,X |abs,X |abs,X

8x |NOP |[STA NOP |SAX |STY STA STX SAX DEY |NOP |[TXA |ANE |[STY STA STX SAX
#imm  |(zp,X) #mm |(zp,X) |zp zp zp zp #mm #imm |abs abs abs abs
9x [BCC |[STA KIL SHA |STY STA STX SAX |TYA STA TXS SHS [SHY |STA SHX |SHA
rel (zp),Y (zp),Y |zp,X |zp,X |zp,Y |zp,X abs,Y abs,Y |abs,X |abs X |abs,Y |abs,Y
Ax |LDY LDA LDX LAX LDY LDA LDX LAX TAY LDA TAX LXA LDY LDA LDX LAX
#imm |(zp,X) [#imm |(zp,X) |zp zZp zZp zZp #imm #imm |abs abs abs abs
Bx |[BCS |LDA KIL LAX LDY LDA LDX LAX CLv LDA |TSX LAS LDY LDA LDX LAX
rel (zp),Y (zp),Y zp.X |zp,X |zp,Y |zp,Y abs,Y abs,Y |abs,X |abs,X |abs,Y [|abs,X
Cx |CPY |CMP |NOP [DCP |CPY |CMP |DEC |DCP [INY CMP |DEX |SBX CPY |CMP |DEC |DCP
#Hmm |(zp,X) #imm |(zp,X) |zp zp zp zp #imm #imm |abs abs abs abs
Dx |[BNE |CMP [KIL DCP [NOP |CMP |DEC |DCP |CLD |CMP |NOP |DCP |NOP |CMP |DEC |DCP
rel (zp),Y (zp),Y [zp,X |zp,X |zp,X |zp,X abs,Y abs,Y |abs, X |abs,X |abs,X [|abs,X
Ex |CPX |SBC |NOP |[ISB CPX [SBC |INC ISB INX SBC |NOP [SBC |CPX [SBC |INC ISB
#Himm |(zp,X) #imm |(zp,X) |zp zp zp zp #imm #imm |abs abs abs abs
Fx |BEQ |[SBC |KIL ISB NOP |SBC INC ISB SED |SBC |NOP |ISB NOP [SBC |INC ISB
rel (zp),Y (@zp),Y zp,X |zp,X |zp,X |zp,Y abs,Y abs,Y |abs,X |abs,X |abs,X |abs,X

Table 2: NMOS 6502 opcode table
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Note on opcode names

Because the additional instructions were neither supported nor documented, there are no official names for the
instructions. As such, emulators, assemblers, and disassemblers vary widely in the names used. The names
used here match a popularly used assembler, but they are by no means definitive.®

KIL

Opcodes: $02, 12, 22, 32, 42,52, 62, 72, 92, B2, D2, F2.

The KIL opcodes permanently lock up the 6502 such that it stops executing instructions and no longer responds
to interrupts. Only a reset will restart execution.

NOP

Opcodes: $04, 0C, 14, 1A, 1C, 34, 3C, 44, 54, 5A, 4C, 64, 74, 7A, 7C, 80, 82, 89, D4, DA, DC, F4, FA, FC.

NOP opcodes may execute addressing modes but do not change registers, flags, or control flow. Opcode $EA is
the only official NOP instruction.

Note that these opcodes proceed similarly to ALU operations, so they will read operands similarly as to an LDA
instruction. This includes executing an additional cycle when indexing across a page boundary.

Merged read-modify-write and read-modify instructions

Many of the illegal instructions are a result of combining read-modify-write instructions such as INC/DEC with
ALU instructions like ADC and SBC. The combinations are:

+ DCP=DEC + CMP
+ ISB=INC +SBC

+ SLO=ASL+ORA

+ RLA=ROL +AND

+ SRE=LSR+EOR
+ RRA=ROR +ADC

The read-modify-write portion proceeds in the same manner, but the result of the RMW instruction is then used
as the argument of the ALU instruction, changing the flags and potentially A. Cycle count is the same as the
RMW instruction.

The ISB and RRA instructions are sensitive to the decimal mode flag due to incoporation of the SBC and ADC
functions.

LAX (LDA + LDX)

Opcodes: $A3, A7, AF, B3, B7, BF

LAX instructions load the same value into both A and X, setting the N and Z flags.

[8] For more information on undocumented opcodes and alternative mnemonics: [VIC09] [IlIOpc]
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SAX (STA + STX)

Opcodes: $87, 8F, 97, 9F

Stores the bitwise AND of A and X to memory. No flags are changed.
SHA

Opcodes: $93

Stores the bitwise AND of A, X, and the high byte read from the base address. Note that this is the high byte of
the base address as read from page zero, not the high byte after Y has been added.

In addition, if a page crossing occurs during indexing with Y, the result of the bitwise AND also replaces the high
address byte.

Warning

The $93 opcode has been reported to be unstable — the interaction between the high byte and bitwise
AND operation does not reliably occur on all CPUs.

SHX

Opcodes: $9E

Stores the bitwise AND of X and the high byte + 1 of the base address. If a page crossing occurs during indexing
with Y, the bitwise AND result also replaces the high address byte.

ANC

Opcodes: $0B

Same as AND, except with the result bit 7 also being copied into the carry flag.

ASR (AND + LSR)

Opcodes: $4B

Same as an AND instruction followed by and LSR A instruction.
ARR (ADC + AND + ROR)

Opcodes: $6B

Performs a complex operation involving a rotate right and possible decimal correction, changing the A register
and the N, V, Z, and C flags.

ANE

Opcodes: $8B

Bitwise AND with accumulator, X, and immediate data, written back to accumulator.
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Warning

The $8B opcode is not stable and may produce varying results where not all bits in the above formula
participate in the bitwise AND instruction.®

SHS (TXS + STA abs,Y)

Opcodes: $9B

The stack pointer (S) is set to the bitwise AND of X and A, and the data written to abs,Y is this result bitwise
ANDed with the high byte + 1.

LXA (LDA + TAX)
Stores the bitwise AND of A and the argument to both A and X, setting the N and Z flags.

Warning

The $AB opcode is not stable. It has been reported to load the immediate argument to A and X without the
bitwise AND on an Atari 800.

LAS (LDA + TSX)
A, X, and S are set to the bitwise AND of the read data and S, with the N and Z flags set as usual.
SBX

AND A into the X register, then CMP with data.

3.6 65C02 compatibility

The 65C02 is an enhanced version of the 6502 implemented in CMOS and with additional instructions added.
While it is mostly compatible with the 6502, there are a few differences in both documented and undocumented
behavior.

Note that the 65C02 is not the same as a 6502C. Some Atari computers had a custom CPU called the 6502C
(Sally) that had integrated HALT logic. This chip uses the same NMOS 6502 core and lacks the additional
instructions or behavior of the newer 65C02.

Opcode table

None of the undocumented instructions of the 6502 work on the 65C02. All previously unassigned opcodes are
reassigned to new opcodes or defined as NOPs with specific behavior. Table 3 shows the new opcodes in green
and the defined NOPs in gray. Bit change/branch opcodes in purple are only supported by some 65C02 variants;
other 65C02 makes and the 65C816 do not support bit opcodes.

[9] See http://visual6502.0rg/wiki/index.php?title=6502_Opcode_8B_%28XAA, ANE%29 for an extended discussion of this opcode.
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X0 X1 X2 X3 x4 X5 X6 X7 X8 X9 XA xB xC xD XE XF

Ox |BRK |ORA |NOP |NOP TSB |ORA |ASL |RMBO |PHP |ORA |ASL |NOP |TSB |ORA |ASL |BBRO
(zp,X) zp zp zp zp #imm abs abs abs zp,rel

1x BPL |ORA |ORA |NOP |TRB |ORA |ASL |RMB1 [CLC |ORA |[INC NOP |TRB |ORA |ASL |[BBR1
rel (zp),Y |(zp) zp zp,X |zp,X |zp abs,Y abs abs,X |abs,X |zp,rel

2x [JSR |AND |NOP |NOP BIT AND |ROL |RMB2 |[PLP |AND |ROL |NOP |BIT AND |ROL [BBR2
abs (zp,X) zp zp zp zZp #imm abs abs abs zp,rel

3x [BMI AND |AND |NOP BIT AND |ROL |RMB3 |[SEC |AND |DEC |NOP |BIT AND |ROL [BBR3
rel (zp),Y |(zp) zp,X |zp,X |zp,X |zp abs,Y abs,X |abs,X |abs,X |zp,rel

4x |RTI EOR |NOP |NOP |NOP |[EOR |LSR |RMB4 PHA |[EOR |[LSR |NOP |JMP |[EOR |LSR |BBR4
(zp,X) zp zZp zZp #imm abs abs abs zp,rel

5x |[BVC [EOR |[EOR |NOP |NOP |[EOR |LSR |RMB5 |CLI EOR |PHY |NOP |NOP |[EOR |[LSR |BBR5
rel (zp),Y |(zp) zp,X |zp,X |zp abs,Y abs,X |abs,X |zp,rel

6x |RTS |ADC |NOP |NOP STZ |ADC |ROR |RMB6 |PLA |ADC |ROR |NOP (JMP |ADC |ROR |BBR6
(zp,X) zp zp zp zp #imm (abs) |abs abs zp,rel

7x BVS |ADC |ADC |NOP |STZ |ADC |ROR |RMB7 [SEI ADC |PLY NOP |JMP |ADC |ROR |[BBR7
rel (zp,Y) |(zp) zp,X zp,X |zp,X |zp abs,Y (abs,X) |abs,X |abs,X |zp,rel

8x |BRA [STA |NOP |NOP |STY |STA |STX |[SMBO |[DEY |BIT TXA |NOP [STY [STA |STX |BBSO
rel (zp,X) zZp zZp zp zZp #imm abs abs abs zp,rel

9x |[BCC |[STA |STA |NOP |STY |STA |STX |SMB1 |[TYA |[STA ([TXS |NOP |STZ |[STA |STZ |BBS1
rel (zp),Y |(zp) zp,X zp,X |zp,Y |zp abs,Y abs abs,X |abs,X |zp,rel
Ax |LDY |LDA |LDX |NOP |[LDY |LDA |LDX |SMB2 |TAY LDA |TAX |NOP [LDY |[LDA |[LDX |BBS2
#Himm |(zp,X) [#imm zp zZp zp zp #imm abs abs abs zp,rel
Bx [BCS |LDA |LDA |NOP |LDY |LDA |[LDX |SMB3 |CLV |[LDA |TSX |NOP |[LDY |LDA |[LDX |BBS3
rel (zp),Y |(zp) zp,X zp,X |zp,Y |zp abs,Y abs,X |abs,X |abs)Y |zp,rel
Cx |[CPY |CMP |NOP |NOP |CPY |CMP |DEC |SMB4 |INY CMP |DEX |WAI CPY |CMP |DEC |BBS4
#imm  |(zp,X) zZp zZp zp zZp #imm abs abs abs zp,rel
Dx [BNE |CMP |CMP |NOP |NOP |CMP |DEC |SMB5 |CLD |CMP |PHX |STP |NOP |CMP |DEC |BBS5
rel (zp),Y |(zp) zp,X |zp,X |zp abs,Y abs,X |abs,X |zp,rel
Ex |CPX [SBC |NOP |NOP [CPX |SBC |[INC SMB6 |INX SBC |NOP |NOP |CPX |[SBC |[INC BBS6
#Himm  |(zp,X) zp zp zp zp #imm abs abs abs zp,rel
Fx BEQ |SBC |[SBC |NOP |NOP |[SBC [INC SMB7 |[SED |SBC |PLX |NOP |NOP |[SBC |INC BBS7
rel (zp),Y |(zp) zp,X |zp,X |zp abs,Y abs,X |abs,X |zp,rel

Table 3: 65C02 opcode table

Absolute indirect addressing bug

The JMP (abs) instruction ($6C) no longer wraps within a page on the 65C02: a JMP ($02FF) instruction will
access $2FF and $300 instead of $2FF and $200, and take an additional cycle when doing so.

Decimal mode

ADC and SBC instructions take one additional cycle in decimal mode on the 65C02. This is to compute proper
flag results.

The 65C02 automatically clears the decimal flag on reset or on entry to an interrupt. On the 6502, it was
undefined on power-up and left at the previous state on interrupt.

Read-modify-write instructions

Instructions that do read-modify-write cycles — INC, DEC, ASL, LSR, ROL, and ROR - behave differently during
the modify cycle. On the original 6502, the sequence is read-write-write, where the second cycle is a write cycle
that just rewrites the data that was just read. On the 65C02, the second cycle is a read cycle to that address.
This alters the timing of RMW instructions to WSYNC and breaks fast IRQ acknowledgment hacks involving
RMW cycles on IRQEN/IRQST.
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Read-modify-write with absolute indexing

The abs,X mode versions of read-modify-write instructions only take 6 cycles on the 65C02 when indexing within
a page, instead of 7 as on the 6502.

3.7 65C816 compatibility

The 65C816 is a further enhanced version of the 65C02 with even more instructions and addressing modes as
well as new native execution mode. It is actually slightly more compatible with the original 6502 than the 65C02
due to some corrections in emulation mode. Because of its greatly increased power, the 65C816 is more
common of an addition to Atari computers than the 65C02.

Opcode table

The 65C816 doesn't support any of the 6502's undocumented instructions either, but it has even more of the
previously unused opcodes filled with valid instructions, including ones that were NOPs on the 65C02. There are
no unassigned opcodes on the 65C816. New opcodes are shown in blue in Table 4.

X0 x1 x2 x3 x4 x5 X6 X7 x8 X9 XA xB xC xD XE XF

Ox |BRK |ORA |COP [ORA ([TSB |ORA |ASL |ORA |PHP |ORA |ASL |PHD ([TSB |[ORA |ASL |ORA
(dp,X) |imm |d,S dp dp dp [dp] #imm abs abs abs al

1x |BPL |ORA |ORA |ORA |TRB |ORA |ASL |ORA |CLC |ORA |INC TCS |TRB |ORA |ASL |ORA
rel (dp),Y |(dp) (d,S),Y |dp dp,X |dp,X |[dpl.Y abs,Y abs abs,X |abs, X [al,X

2x (JSR |AND JSR |AND [BIT AND |ROL |AND |[PLP |AND |ROL |PLD BIT AND |ROL |AND
abs (dp,X) |al d,S dp dp dp [dp] #imm abs abs abs al

3x BMI AND |AND |AND BIT AND |ROL |AND |[SEC |AND |DEC |TSC BIT AND |ROL |AND
rel (dp),Y |(dp) (d,S),Y dp,X |dp,X |dp,X [[dpl.Y abs,Y abs,X |abs,X |abs, X |al,X

4x |RTI EOR (WDM |[EOR |MVP |[EOR |[LSR |EOR |PHA |[EOR |[LSR |PHK |[JMP |[EOR [LSR [EOR
(dp,X) d,S b,b dp dp [dp] #mm abs abs abs al

5x |BVC |[EOR |[EOR [EOR [MVN |[EOR |[LSR |[EOR [CLI EOR |[|PHY |TCD |[JMP |[EOR |LSR |EOR
rel (dp),Y |(dp) (d,S),Y |b,b dp,X |dp,X |[dpl.Y abs,Y al abs,X |abs,X |al,X

6x |RTS |ADC |PER |ADC |[STZ |ADC |ROR |ADC |PLA |ADC |ROR |RTL | JMP |ADC |ROR |ADC
(dp,X) |rell6 |d,S dp dp dp [dp] #imm (abs) |abs abs al

7x |BVS |ADC |ADC |ADC |STZ |ADC |ROR |ADC |SEI ADC |PLY [TDC |(JMP |ADC |ROR |ADC
rel (dp,Y) |(dp) (d,S),Y [dp, X |dp,X |dp,X |[dpl,Y abs,Y (abs,X) jabs,X |abs,X |al,X

8 |BRA |STA |BRL [STA [STY |STA |STX |STA |DEY |BIT TXA |PHB |STY |STA |STX |STA
rel (dp,X) |rell6 |d,S dp dp dp [dp] #imm abs abs abs al

9x |BCC |STA |STA [STA [STY |STA [STX |STA |[TYA |STA |[TXS [TXY |[STZ |STA |STZ |STA
rel (dp),Y |(dp) (d,S),Y [dp,X |dp,X |dp,Y |[dpl,Y abs,Y abs abs,X |abs,X |al,X

Ax |LDY |LDA |LDX |LDA |[LDY |LDA |LDX |LDA |TAY LDA [TAX |PLB |LDY |LDA |LDX |LDA
#imm |(dp,X) #imm |d,S dp dp dp [dp] #imm abs abs abs al

Bx |[BCS |LDA |LDA |LDA |LDY |LDA |LDX |LDA [CLV [LDA ([TSX |[TYX [LDY |[LDA |LDX |LDA
rel (dp),Y |(dp) (d,S),Y dp,X |dp,X |dp,Y [[dpl.Y abs,Y abs,X |abs,X |abs,Y |al,X

Cx |CPY |CMP |REP |CMP |CPY |CMP |DEC |CMP [INY CMP |DEX |WAI |CPY |CMP |DEC |CMP
#imm |(dp,X) #imm |d,S dp dp dp [dp] #imm abs abs abs al

Dx |[BNE |CMP |CMP |CMP |PEI CMP |DEC |[CMP |CLD |CMP |PHX |[STP [ JMP |CMP |DEC |CMP
rel (dp),Y |(dp) (d,S),Y |(dp) dp,X |dp,X |[dpl,Y abs,Y [abs] |abs,X J|abs,X Jal,X

Ex |CPX |SBC |SEP [SBC [CPX |SBC |INC SBC [INX SBC |NOP ([XBA |CPX [SBC |INC SBC
#mm |(dp,X) #imm |d,S dp dp dp [dp] #imm abs abs abs al

Fx |BEQ |SBC [SBC |SBC |PEA |[SBC |INC SBC |[SED |SBC |PLX |[XCE [SR [SBC |INC SBC
rel (dp),Y |(dp) (d,S),Y |abs dp,X |dp,X |[dpl.Y abs,Y (abs,X) jabs,X |abs,X |al,X

Table 4: 65C816 opcode table
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Decimal mode

The 65C816 computes “correct” flags for ADC and SBC in decimal mode like the 65C02, but doesn't take an
additional cycle to do so, fixing the timing incompatibility.

The decimal flag is cleared on entry to the reset or interrupt handlers in the same way.
Absolute indirect addressing bug

Like the 65C02, the 65C816 indexes correctly across pages when reading the address for a JMP (abs)
instruction. However, it does so without an additional cycle.

Read-modify-write instructions

Unlike the 65C02, the 65C816 preserves the 6502's read/write/write cycle pattern for RMW instructions in
emulation mode. In native mode, the sequence is read/read/write as for the 65C02. The 65C816 also executes
the abs, X versions in 7 cycles like the 6502.

Cross-bank indexing

Absolute indexed and indirect indexed address modes can cross banks on the 65C816 on an attempt to wrap
around from $FFFF to $0000, even in emulation mode. This is a rare case where the 65C816 is less compatible
in emulation mode than the 65C02 and affects the abs,X, abs,Y, and (zp),Y addressing modes. The access
instead crosses over into bank $01.

The most common way to accidentally trigger this is by attempting to index using the Y register and a negative
offset on a page zero symbol, i.e. LDA ICHIDZ-$F0,Y. The zp,Y addressing mode is only available on the STX
and LDX instructions, so assemblers will commonly promote this to the abs,Y addressing mode. The resulting
code then wraps around the 64K address space and fails on a 65C816 with 24-bit addressing.

Depending on the address wrapping pattern, affected code may still work if there is RAM in bank $01 and the
data stored there is only accessed by wrapping around the 64K address space. The affected code will access
bank $01 instead of bank $00 as originally intended, but still work, The code will also work if the 65C816 is only
connected to a 16-bit address bus, in which case banks $00 and $01 are equivalent anyway.

Program-bank and hardwired bank O reads never cross bank boundaries and wrap within the same bank, in
either emulation or native mode. This includes instruction fetches, relative branches, absolute indirect and
absolute indexed indirect addressing modes, stack operations, and direct page addressing mode reads.

3.8 65C816 new features

New to the 65C816 is the ability to switch into native mode, which unlocks the full power of the 65C816 including
16-bit memory access, arithmetic, and indexing, extended addressing, and extended interrupt handling.

M and X flags

The formerly unused bits 5 and 4 of the P register are re-purposed in native mode as the M and X flags,
respectively. The M flag selects the width of memory and accumulator operations, whereas the X flag selects the
width of operations involving the X and Y index registers. Indexed addressing and memory accesses from X/Y
based instructions like PHX and CPY use the X flag. In both cases, a flag value of 1 selects 8-bit width, and 0
selects 16-bit width. Both M and X flags are forced to 1 upon entering emulation mode and cannot be changed
until native mode is re-entered.
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Whenever the X flag is set to 1 for any reason, the high bytes of the X and Y registers are cleared to $00 and
their previous contents are lost. This happens both with an explicit change to the X flag and implicitly when
switching to emulation mode. Changing the X flag back to 0 does not restore the previous contents of the high
bytes, which will remain $00. However, setting the M flag to 1 does not clear the high byte of the accumulator
register, which can still be accessed by the XBA, TCS, TSC, TCD, TDC, TAX, and TAY instructions.

Some memory access and accumulator-based operations are always 16-bit regardless of state of the M flag,
because they involve registers or values that are inherently 16-bit wide. These include accesses to the D register
(PHD, PLD, TCD, and TDC), accesses to the S register (TCS, TSC, TXS, TSX), push effective address
instructions (PEA, PEI, PER), and indirect addressing modes ((dp), (dp,X), (dp),Y, etc).

Switching to native mode

The only way to enter native mode is with the XCE instruction, which exchanges the carry and emulation state
flags. Executing XCE with C=0 enters native mode and sets C=1 if the CPU was previously in emulation mode.
Entering native mode switches the CPU to the alternate native mode set of interrupts vectors and unlocks the
M/X bits in the P register.

Executing XCE with C=1 exits native mode and switches back to emulation mode. When this happens, the
emulation interrupt vectors become active, M/X bits are set to 1, the upper bytes of the X and Y registers are lost
and reset to $00, and the high byte of the stack pointer is set to $01. The values of the D, DBK (B), and PBK (K)
registers are unaffected, however.

Many new features of the 65C816 do not require native mode to use. New instructions, new addressing modes,
24-bit addressing, and 16-bit operations that do not depend on clearing M/X bits can be used directly from
emulation mode. However, the ability to execute code in banks other than bank 0 is of limited use as interrupts
do not save the program bank on the stack in emulation mode, making it impossible to return to the interrupted
routine.

Extended direct page addressing

In emulation mode, the dp,X and dp,Y addressing modes wrap within a page by default to emulate the behavior
of the 6502's zp,X and zp,Y addressing modes. This occurs whenever the low byte of the D register is $00,
which is the default as D is set to $0000 on reset. If the D register is modified to a value where the low byte is not
$00, then direct page indexing will cross pages, but at the cost of one additional cycle per direct page indexed
instruction. This extra cycle occurs regardless of whether a page crossing occurs.

There are a couple of exceptions to direct page wrapping in emulation mode. Instructions that read words from
direct page and are new to the 65C816 will cross pages regardless of the low byte of D. This includes PEI (dp)
and instructions using the [dp] and [dp],Y addressing modes, which will cross over from $00FF to $0100 and
$0101 with D=0. The (dp) and (dp),Y addressing modes will wrap in this case, with ($FF) and ($FF),Y reading
the base address from $FF and $00.

The (dp,X) addressing mode has mixed behavior in emulation mode. With the low byte of D set to $00, (dp,X)
has the 6502/65C02 compatible behavior of wrapping within the page. However, when the low byte of D is not
$00, the address computation for the low byte will cross pages and then the high byte will wrap. For instance,
($FF,X) with X=$FF and D=1 will read the low byte from $01FF and the high byte from $0100.

In native mode, all direct page accesses cross page boundaries with any instruction regardless of the value of D.
Indexing will cross pages freely, and 16-bit accesses starting at $xxFF will continue to $yy00 on the next page.
No additional clock cycles are taken when doing so. However, direct page accesses always wrap within bank 0,
and if the low byte of D is not $00, all direct page indexed addressing will take an additional cycle regardless of
whether a page crossing occurs.
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Extended stack addressing in native mode

The stack pointer is 16 bits wide in native mode and thus the stack can be of any length and start at any
address. Like direct page accesses, stack-relative accesses are always constrained to be within bank 0, even
when wrapping from $FFFF to $0000.

Warning

In emulation mode, the high byte of the stack pointer is constrained to $01, so setting the stack pointer via
TXS places the stack in the $01xx page as it does on the 6502. However, in native mode, executing TXS
with 8-bit indexing (X flag set) sets the stack pointer to $00xx, which is typically undesirable. This means
that setting the stack in native mode usually requires either 16-bit indexing mode or using TCS instead.

Similarly to when the X flag is set, whenever emulation mode is entered, the high byte of S is reset to $01 and
the previous contents are lost.

Extended stack addressing in emulation mode

During emulation mode, stack operations performed by all 6502 and 65C02 instructions are constrained to page
one. However, almost all new instructions introduced on the 65C816 that access the stack will temporarily index
and write outside of page 1 into page zero when pushing or read from page two when popping.*°

Instructions that have this behavior: PHD, PLD, PLB, PEA, PEI, PER, JSL, JSR (a,X), RTL, LDAd,S, STAd,S,
LDA (d,9),Y.

Instructions that don't have this behavior: PLX, COP, PHB, PHK. The latter two instructions, although new to the
65C816, can't differ in behavior because they only push a single byte, which is always within page one
regardless.

The stack pointer is readjusted to be within page 1 again after the instruction executes. For instance, executing
PHD twice with S=0 will write to $0100 and $00FF, then $01FE and $01FD. Similarly, RTL with S=$FF will read
from $0200-0202 and then finish with S=$02.

Interrupt vectors

In native mode, a different set of interrupt vectors is used: ($FFEE) for IRQ, ($FFEA) for NMI, ($FFE6) for BRK,
($FFE4) for COP, and ($FFE8) for ABORT. The dedicated BRK vector means that it is no longer necessary to
check for it in IRQ and NMI handlers.

There is no native RESET vector because the 65C816 always switches to emulation mode on reset. Thus,
($FFFC) is always used.

3.9 Examples

Pole Position

The decrementing counters seen at the end of a race rely on the undocumented behavior of the N flag in
decimal mode. If the N flag is not emulated correctly, the counters may underflow and count indefinitely.

[10] See also [ObWrap].
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3.10 Further reading

For a witty introduction to 6502 assembly language programming, read [LAN84].

Everyone knows about the official 6502 instruction set and about the JMP indirect bug, but sources giving exact
corner-case behavior in other areas are scarcer. For cycle-level operation of the 6502, [MOS76] and [MOS764]
give details that can be difficult to find elsewhere, such as precise timing for acknowledging non-maskable
interrupts. The datasheet in [EYE86] gives similar information for the 65C816 and has valuable information about
differences between the NMOS 6502, 65C02, and 65C816.

For undocumented instruction details, consult [VICO09] for a thorough overview and for functionality and timing
details. Note, however, that there are some errors in compared to the actual 6502 and the VICE emulator in the
BCD correction algorithm.
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Chapter 4
ANTIC

ANTIC is the master chip of the Atari 8-bit chipset, controlling frame timing and doing all direct memory
access (DMA).
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4.1 Basic operation

Addressing
ANTIC occupies the $D4xx block of address space. Only the low four bits are decoded, so any address of the
form $D4XY will address mirror X of register Y. The canonical registers are at $D400-D40F.

Unassigned addresses within the ANTIC address range read as $FF. This is true even on hardware models that
have a floating data bus for unassigned addresses, as ANTIC actually drives $FF onto the bus for addresses in
its range that don't have registers assigned.

Reset behavior

On power-on or reset, ANTIC automatically clears the following items:
+  NMIEN
- DMACTL
« Playfield DMA clock
The following items are not reset:
« Refresh row address counter

« Horizontal and vertical counters

+  WSYNC

+  HSCROL/VSCROL
+  PMBASE

« CHBASE

«  PENH/PENV

« CHACTL

« DLISTLH

+  NMIST

«  Memory scan counter
« Pending RNMI
Typically a warm reset routine will clear all registers in order to reset ANTIC to a known state.
Note that on 400/800 hardware, ANTIC is only reset on power-on. On XL/XE hardware, the Reset button also
resets ANTIC.
Typical power-up values

Any registers that are not internally cleared by ANTIC on reset have undefined contents on power-up. However,
the internal architecture biases some registers toward specific values:

[11] There is evidence in the chip circuitry of a power-on detector that is supposed to reset the horizontal and vertical counters only on
power-up, but this does not seem to work in practice as the machine powers up with varying values of VCOUNT.
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Register | Typical power-up value
PENH $00
PENV $FF
NMIST $7F

Table 5: Typical power-up values for ANTIC registers
These values are most likely to appear when the system is powered up cold. If it has been powered down

recently — within a few seconds — these registers may instead show some partial bits from when the system was
last turned off.

4.2 Display timing

As the main display processor in the system, ANTIC is responsible for overall display timing. The ideal display
timings produced by ANTIC are as follows (ignoring component variation):

Parameter NTSC PAL
Master clock 14.31818MHz 14.18757MHz
Machine clock 1.789773MHz 1.773447MHz
(14.31818MHz + 8) (14.18757MHz =+ 8)
Horizontal scan rate (scan line rate) | 15.69975KHz 15.55655KHz
(1.789772MHz + 114) (1.773447MHz + 114)
Vertical scan rate (frame rate) 59.92271Hz 49.86074Hz
(15.69975KHz + 262) (15.55655KHz + 312)

Table 6: ANTIC display timing

Importantly, the horizontal and vertical scan rates deviate from ideal NTSC and PAL broadcast timing. For NTSC,
the machine clock runs at exactly half the color subcarrier rate (3.58MHz), but the scan line is 114 machine
cycles instead of 113.75 cycles and the frame has 262 scan lines instead of 262.5. This prevents the color
subcatrrier from inverting phase on each scan line and produces a non-interlaced display with 15.700KHz /
59.92Hz timing instead of an interlaced one with 15.735KHz / 59.94Hz timing. Similarly, the PAL ANTIC
produces 312 scan lines instead of 312.5 and also produces a non-interlaced display.

Mixed PAL/NTSC systems

While standard systems have matched ANTIC and GTIA chips, it is possible to combine an NTSC ANTIC with a
PAL GTIA or vice versa. This results in either a 50Hz NTSC display or a 60Hz PAL display. The NTSC-50 case is
the more interesting of the two as the 50Hz frame rate avoids many compatibility issues with software written for
PAL. In such a mixed system, the ANTIC type determines the frame timing and the GTIA type determines the
value read from the PAL register.

Although ANTIC does not directly indicate its type via a readable register like GTIA does, an NTSC ANTIC can
readily be distinguished from a PAL ANTIC by polling the VCOUNT register.
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Pixel aspect ratios

The display timings used by ANTIC also determine the aspect ratio of pixels on screen. These pixels are not
square, and furthermore, differ between NTSC and PAL.

For NTSC, a dot clock of 12.2727MHz corresponds to square pixels.** However, this is for interlaced video (~480
visible scan lines), so the equivalent rate for non-interlaced video is half the rate, 6.1364MHz. The dot clock
produced by NTSC ANTIC+GTIA at hires mode is faster at 7.159MHz, giving a noticeably narrow pixel at
0.857:1. Player/missile graphics and higher-resolution but non-hires playfields typically use 160 clock resolution,
however, so their pixels will be doubly wide at 1.714:1.

For PAL, a dot clock of 14.75MHz is used for square pixels in interlaced video, giving 7.375MHz for non-
interlaced video. The PAL ANTIC+GTIA in hires mode outputs pixels at 7.094MHz, giving a slightly wide hires
pixel at 1.04:1. Although not square, this is close enough for many purposes.

Many other computers of the era used a similar technique of generating pixels with a dot clock derived from the
color subcarrier frequency and have comparable pixel aspect ratios, particularly the Apple Il and the Amiga.

4.3 Playfield

The main display produced by ANTIC is known as the playfield.
Playfield width

Three playfield widths are supported: narrow, normal, and wide. The normal playfield width is 160 color clocks
wide (320 hires pixels), and is used by all OS graphics modes. Narrow playfields are 128 color clocks wide;
these are useful when the extra width is not needed, as narrow playfields have less data to set and also allow
the CPU to run slightly faster. Wide playfields are 192 color clocks wide and even cover the overscan regions on
the sides.

All three playfield widths share the same center, so a normal playfield adds 16 color clocks on each side of the
narrow playfield, and a wide playfield adds another 16 color clocks on each side. However, the wide playfield is
so wide that it is truncated: 12 color clocks are hidden on the left side and two are cut off by horizontal blank on
the right. As a result, only 178 color clocks out of 192 are visible.*?

DMACTL bits 0-1 control the width of the playfield, and can also disable the playfield entirely, causing the
background color to be displayed.

Playfield colors

The playfield is composed of up to four colors, PFO-PF3, overlaid on top of the background (BAK). ANTIC tells
the GTIA when each playfield color is used, and five independent color registers in GTIA are used to produce the
final playfield. Depending on the display mode, there are four different color configurations:

« Two colors. These bitmap modes display either BAK or PFO.

« Four colors. These bitmap modes display BAK or PFO-PF2.

- Five colors. These character modes display BAK or PFO-PF3.

« One color in two luminances. These are special high-resolution modes where pixels are so narrow
[12] [TIVideoDec] p.2-7.
[13] The displayable width for a wide playfield is given as 176 color clocks in some references. The discrepancy is because in a wide

unscrolled IR mode 2-5/D-F playfield, the last two color clocks are garbage due to suppressed DMA cycles. They are part of the
playfield, however, as they can cause player-playfield collisions.
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that they are only a half color clock wide. In these modes, the entire playfield is a single hue as specified
by PF2, but the graphics data is used to conditionally substitute in the luminance from PF1.

The fourth playfield color, PF3, is seldom used by the playfield. Therefore, the GTIA contains a bit to reuse this
color as a fifth color for player/missile graphics instead.

Playfield modes

ANTIC supports fourteen playfield display modes, selected by the display list. Each playfield covers the entire
width of the screen for some vertical distance, controlled by the display list; it is possible to vertically stack
different playfield modes on the same screen. Six of the display modes are character modes, while the other
eight are mapped (bitmap) modes.

Playfield data ordering

All playfield data, including bitmap data and character font data, is stored such that bit 7 represents the left-mode
pixel on screen and bit 0 is the right-most pixel. In multicolor modes where a pair or group of four bits is used to
represent a pixel, the bits are ordered as for CPU integers. For instance, the color PF1 in the second pixel of a
four-color bitmap or character map mode would be represented by the pattern xx10xxxx.

4.4 Character modes

The playfield can be configured to display text through character modes, which use a layer of indirection to
produce output. In these modes, two separate memory regions are used:

+ Character names. These are fetched first, and indicate which characters to display within the mode line.

« Character set data. The character names are then used to index into the current row of the character
set to fetch the actual data to display.

Character modes allow text displays to be produced with minimal data manipulation, since the CPU need only
modify one byte per character rather than copy the data for each character.

Some character modes display characters as monochrome, whereas others display characters as multicolor.
The multicolor modes are often used to quickly display graphical tiles rather than text.

Mode list

These are the character modes supported by ANTIC:

Mode | Scan lines | Colors | Bytes (hormal width) | Resolution | Color mode | Pixel size
2 8 1.5 40 40 Hi-res 8x8
3 10 15 40 40 Hi-res 8x8
4 8 5 40 40 Lo-res 8x8
5 16 5 40 40 Lo-res 8x16
6 8 5 20 20 Lo-res 16x8
7 16 5 20 20 Lo-res 16x16

Modes 2 and 3: High-resolution monochrome text

Mode 2 is the standard 40-column screen seen on startup. Each playfield byte selects an 8x8 character from an
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array of 128 pointed to by CHBASE; bit 7 controls inversion or blinking, based on modes in CHACTL.

The character set requires 1K of memory and must be aligned to a 1K boundary. Each of the 128 characters is
described by 8 contiguous bytes, where the first byte corresponds to the data for the first scan line. With each
byte, each bit corresponds to a pixel on screen, where bit 7 is the left-most pixel. Because mode 2 is a hi-res
mode, the entire playfield uses the PF2 color, and each bit indicates whether luminance comes from PF2 (0 bit),
or PF1 (1 bit).

Although it is not exposed as a standard OS mode, it is possible to enable the GTIA modes with a mode 2 or 3
playfield, thus giving a 9 or 16 color tiled playfield.

Mode 3 is similar to mode 2, except that each mode line is 10 scan lines tall instead of 8. The extra two scan
lines reuse the same data from the first two, but only one of the pairs displays valid data. Characters 00-5F
display data for scan lines 0-7 and display $00 data for rows 8-9, while characters 60-7F display on rows 2-9
instead and display $00 data for scan lines 0-1. This permits one-quarter of the character set to have
descenders. For descenders to display properly, the character data must be stored out of order since rows 2-7
are displayed above rows 0-1.

Modes 4 and 5: Multicolor text

Mode 4 is another character mode that produces 40 characters across in nhormal width, but unlike modes 2 and
3, mode 4 is a lo-res mode that produces up to five colors. Instead of each character producing monochrome
characters in an 8x8 block, each character is instead 4x8 with pixels twice as wide. Normally each pair of bits
produces either the background color (00) or PFO-PF2 (01-11). If bit 7 is set, however, the 11 pair produces PF3
instead of PF2.

Mode 5 is the same as mode 4, except that scan lines are repeated once and each character is 16 scan lines tall
instead of 8.

Modes 6 and 7: Single color text in five colors

Mode 6 is the familiar single-color, double-wide signature character mode of the Atari. At normal width, it
produces 20 8x8 characters per row, where each pixel is one color clock wide. The character set is half the size
in mode 6, requiring only 512 bytes and 512 byte alignment. Only 64 characters are available in the mode
because the upper two bits are used to select the foreground color used by 1 bits, with 00-11 producing PFO-
PF3. 0 bits in the character data always produce the background color.

Mode 7 is the same as mode 6, except that scan lines are doubled and each character is 16 scan lines tall.
Character set storage

All character modes require image data for each character. For modes 2-5, the character set is stored as 128
characters within a 1K block, aligned to a 1K boundary; for modes 6 and 7, it contains 64 characters within a 512
byte block, aligned on a 512 byte boundary. The low three bits of the address specify the row so that each
contiguous block of 8 bytes represents a character.

The top 6 or 7 bits of the CHBASE register specify the base address of the character set. It can be dynamically
changed on the fly, but the change will not take effect until two cycles past when the register is changed. While
bit 1 is not used in modes that use 1K of character data, it is still stored on write and that latent bit will become

active should a 0.5K character data mode activate.

Blinking and inversion

In the high-resolution modes (modes 2 and 3), bit 7 of the character name is used as an extra attribute bit to
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indicate reverse video or blinking. For this to happen, bits 0 and 1 of CHACTL must be used. When bit 1 is set,
character cells with name bit 7 set are displayed inverted. When bit O is set, those cells are blanked as if the
character font data were all zero bits. This means that in order for text to blink, software must periodically toggle
the state of bit 0. Setting both bits 0 and 1 results in inverted space characters.

If display DMA is temporarily disabled when character name fetch would occur, ANTIC reuses the character
names stored in the line buffer, but the invert/blink state that normally comes from bit 7 is reused from the last
character rather than the bit 7 value from the line buffer.

Bits 0 and 1 of CHACTL have no effect in modes 4-7.
Vertical reflection

Setting bit 2 of CHACTL flips all characters upside-down, displaying row 7 of the character set first. Unlike the
blink and inversion features, this affects all character modes.

Vertical reflection works exactly as if the row bytes in the character set were reversed in order. This means that it
produces nonsensical results for characters with descenders in mode 3 (60-7F), as the reflection causes rows 6-
7 to appear in the descender area.

4.5 Mapped (bitmap) modes

The playfield can also display data from memory directly in bitmap modes, which simply map single bits or pairs
of bits to color. This allows every pixel to be completely independent at the cost of often requiring much more
memory, as much as 8K per frame buffer. ANTIC always displays bitmap data with the first byte of each row and
the most significant bit of each byte corresponding to the leftmost pixel.

The supported modes are as follows:

Mode | Scan lines | Colors | Bytes (hormal width) | Resolution | Color mode | Pixel size
8 8 4 10 40 Lo-res 8x8
9 4 2 10 80 Lo-res 4x4
A 4 4 20 80 Lo-res 4x4
B 2 2 20 160 Lo-res 2x2
C 1 2 20 160 Lo-res 2x1
D 2 4 40 160 Lo-res 2x2
E 1 4 40 160 Lo-res 2x1
F 1 15 40 320 Hi-res 1x1

Mode 8: Four color bitmap at lowest resolution (4x8 pixels)

Mode 8 is the lowest resolution graphics mode, producing 40 pixels across with one of four colors. Bits 7 and 6
of a byte correspond to the left-most pixel; 00 selects the background color while 01-11 produces PFO-PF2. Each
pixel is 4 color clocks wide and 8 scan lines tall.

Modes 9 and A: Bitmap modes with 2x4 pixels

Mode 9 is double the horizontal and vertical resolution of mode 8, with each pixel being 2 color clocks wide and
4 scan lines tall. However, it is only a two-color mode, with each bit selecting the background (0) or PFO (1). Bit 7
is the left-most pixel in each byte.
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Mode A is the four-color version of mode 9. Each pixel selects the background (00) or PFO-PF2 (01-11).
Modes B and D: Bitmap modes with 1x2 pixels

Mode B increases resolution further to 1 color clock and 2 scan lines per pixel, with two colors per pixel
(background and PFO).

Mode D is the same as mode B, except that each pixel is two bits and selects from one of four colors.
Modes C and E: Bitmap modes with 1x1 pixels

Mode C is the same as mode B, except that mode lines are only one scan line high. It is the highest resolution
two color bitmap mode available.

Mode E is the same as mode C, except that each pixel is two bits and selects from one of four colors. It is the
highest resolution four color bitmap mode available.

Mode F: High resolution bitmap mode

Mode F produces 320 pixels across at normal width, with each bit corresponding to a pixel one-half color clock
wide and one scan line tall. It is a high-resolution mode, meaning that the whole playfield uses the PF2 color and
the luminance from either PF2 (0) or PF1 (1).

This mode is also the mode that serves as the basis for the three new modes added with the GTIA, the only
difference in setup is that bits 6 and 7 of PRIOR on the GTIA are set to a value other than 00.

4.6 Display list

The display list determines how and when ANTIC fetches playfield data for display through GTIA. It is composed
of a series of one-byte or three-byte instructions, each of which controls the display of at least one scan line on
screen, and is normally repeated for every frame.

Instruction pointer

The DLISTL and DLISTH registers contain the instruction pointer used to fetch the display list. At the end of each
mode line, ANTIC fetches a new instruction at the location pointed to by DLISTL/DLISTH into the instruction
register (IR), and then increments the pointer. This continues until a jump instruction is reached, which then
loads a new address into DLISTL/DLISTH. ANTIC does not store the start of the display list and has no registers
to do so; the display list must either loop or be restarted by the CPU.

The display list can reside anywhere in the 64K address space, but it cannot cross a 1K boundary. This is
because the DLISTL/DLISTH register is actually split into 6 bit and 10 bit portions, where the lower 10 bits
increment and the upper 6 bits do not.** As a result, during normal execution the display list will wrap from the
top of a 1K block to the bottom during fetching, e.g. $07FF to $0400. This will happen even in the middle of a
three-byte LMS or jump instruction. Jump instructions are not limited and can cross 1K boundaries to any
address.

DLISTL/DLISTH are live during display list execution and any write to either will immediately change the address
used for the next display list fetch. Because of the possibility of display list interrupts, it is dangerous to do this in
the middle of a display list, as changing only one of the address bytes may cause ANTIC to execute random
memory as a display list and therefore issue spurious DLIs. A $C1 instruction is particularly dangerous as it will
cause a DLI to activate every scan line until vertical blank and can easily cause a crash. Therefore, the display

[14] Hardware 11.10
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list pointer should normally only be updated when either display list DMA is disabled or during vertical blank.
Instruction format

A display list instruction is described in a single byte as follows:

DL |LMS| Vs | HS | Mode

D7 Display list interrupt

0 No interrupt

1 Interrupt CPU at beginning of last scan line
D6 Load memory scan counter (LMS operation)

0 Normal

1 Load memory scan counter with new 16-bit address
D5 Vertical scroll

0 Disable vertical scrolling

1 Enable vertical scrolling

D4 Horizontal scroll

0 Disable horizontal scrolling

1 Enable horizontal scrolling
D0:D3 Mode

0000 Blank

0001 Jump

other  Non-blank mode line
Instruction bytes are read into the Instruction Register (IR) within ANTIC.
Playfield mode lines
Modes 2-F select a playfield mode line for display.
Load Memory Scan (LMS) commands

Setting bit 6 on a non-blank mode line causes the playfield memory scan pointer to be reloaded with a new
address from the two following bytes, LSB first. This can be done on any such mode line and as frequently or
infrequently as required; no blank line is incurred and the display appears uninterrupted. Normally one LMS is
required at the beginning of the display list to reset the playfield address to the beginning of the screen memory.

Screen modes that require more than 4K of memory require at least one other LMS command in the middle of
the screen to hop the 4K boundary. LMS commands may also be used in order to store rows of the display in
discontiguous memory or with address spacing other than the default for the current playfield width, which is
useful for large scrolling playfields.
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Warning

An LMS alone is not enough to correctly display a playfield that requires more than 4K of data. If a scan
line crosses a 4K boundary, it will wrap around to the beginning of the 4K block in the middle of the scan
line. This cannot be fixed with LMS as that can only affect the beginning of the scan line. The OS avoids
this problem while still maintaining contiguous addressing by adjusting the offset of the playfield buffer so
that the 4K boundary occurs exactly between scan lines.

Blank mode lines (IR mode 0)

A blank mode line is specified by an instruction byte whose lowest four bits are 0000. In this case, bits 4-6
specify a scan line count instead, where 000-111 specify 1-8 scan lines. As a result, a blank mode line is always
considered to have the horizontal/vertical scroll and LMS bits cleared. However, it can trigger a DLI, and is also
subject to height modification if at the end of a vertical scrolling region.

Jump command (IR mode 1)

Instruction bytes with a mode of 0001 are jump commands and are always followed by two bytes indicating the
new instruction pointer for the display list. This produces a three-byte instruction similar to a 6502 JMP
instruction, where the new 16-bit address is specified as low-byte first. Because the jump instruction occupies a
display list slot, a blank line is displayed during its execution.

Like blank line instructions, jump instructions are never interpreted as having scrolling enabled, regardless of the
values of bits 4 and 5, which are ignored for jump instructions. However, if the jump instruction follows a
vertically scrolled mode line, it can be extended due to ending a vertical scrolling region the same way that blank
lines can. When this occurs, ANTIC repeatedly fetches a new display list address at the beginning of each
subsequent scan line. This has the effect of following a chain of indirect 16-bit addresses and is typically
undesirable.

DLlIs can be triggered on jump commands.
Jump and wait for Vertical Blank (IR mode 1 + bit 6)

A jump instruction with bit 6 set ($41) also suspends the display list until vertical blank. This is usually used to
terminate the display list and restart it for the next frame. When using a display list that loops using such an
instruction, it is not necessary to write DLISTL/DLISTH per frame as ANTIC will autonomously repeat the display
list every frame.

The internal execution of a JVB instruction is the same as if display DMA were disabled immediately after a jump
instruction. No instruction or address bytes are fetched again, and the jump instruction is replayed over and over.
If the previous instruction had vertical scrolling enabled, then the JVB instruction will initially have its height
modified appropriately, and then replay subsequently with one scan line high as usual. Similarly, if the DLI bit is
set on the JVB instruction ($C1), ANTIC will fire a DLI each and every time it is replayed, up to once per scan
line.

Like any other instruction, JVB requires a scan line to execute. This means that attempting to create a display list
with 240 visible scan lines and ending with a JVB will fail, since the JVB makes the display list 241 scan lines
tall. Unless DLISTL/DLISTH is rewritten in the VBI to manually restart the display list each frame, this will result
in a flickering display where even frames display the intended 240 line display and odd frames are blank frames
consisting solely of the JVB instruction.

The display list pointer is reset when the address bytes are fetched on the first scan line of the JVB instruction.
Writes to DLISTL/DLISTH afterward will replace the address that was loaded with JVB, even if they occur before
vertical blank.
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Once display list DMA has been suspended with a JVB instruction, there is no way to restart it other than to wait
for vertical blank.

Valid display list range

The display list starts at scan line 8 and ends no later than scan line 248. The maximum height of a display list is
thus always 240 scan lines. This is true even in PAL, which has 50 more scan lines than NTSC.

If a display list is too long, ANTIC automatically suspends the display list at the beginning of vertical blank at
scan line 248 and resumes it at the end of vertical blank on scan line 8 of the next frame. This means that if a
display list were exactly 480 scan lines tall and looped with a jump ($01) instruction, it would alternate perfectly
between two images. Typically this doesn't happen, though, because the vertical blank routine reloads
DLISTL/DLISTH. Otherwise, however, ANTIC will happily keep fetching instructions, wrapping around within 1K
of memory over and over.

The vertical scroll bit (bit 5) is still tracked across vertical blank. This means that if the vertical scroll bit is always
on for all displayed mode lines, no vertical scrolling actually occurs, because none of the mode lines is either the
start or end of a vertical scrolling region.

Any mode line which extends partially over the vertical blank is truncated. If this occurs when a DLI is enabled on
that mode line, the DLI is skipped since the last scan line never occurs.

Suspended display list DMA

DMACTL bit 5 controls display list DMA, but the display list itself is actually always enabled. When DMA is
disabled, the display list instead repeats its previous instruction byte. Any Jump or Load Memory Scan (LMS)
commands are disabled as the address fetch is also skipped, and the display list pointer does not increment. If
the display list was stopped after a JVB instruction ($41), this produces blank lines and the display list is
effectively stopped. However, any other instruction byte activates a mode line as usual, including multi-row blank
lines, character and bitmap mode lines, and even activating DLIs as usual.

Turning off display list DMA has no effect after a jump and wait for vertical blank ($41) instruction executes, as
no fetches occur anyway once JVB completes.

While bits 0-5 and bit 7 of the instruction register are preserved across vertical blank, bit 6 of the IR is cleared
across vertical blank. This makes no difference except in the extremely rare case where display list DMA is
enabled on cycles 0 or 1, late enough for the instruction byte fetch to be suppressed but early enough for the
address fetches to occur.

Display list DMA enablel/disable timing

Display list instructions are fetched on cycle 1 of a scan line, between missiles and players. However, display list
DMA must be enabled by cycle 113 of the previous line in order for it to take effect at the beginning of the next
line. If DMA is enabled on cycle 0, it still doesn't occur on the immediately following cycle.

Hi-res last scan line bug

Under normal circumstances, a display list should not be constructed such that scan line 247 is a hi-res scan
line. This is not ordinarily possible with a normal display list, only with one that is too long or by repeating mode
lines by disabling display list DMA. If scan line 247 is a hi-res line, then ANTIC will fail to properly activate vertical
blank or vertical sync in the active playfield display region whenever bits 0-1 of DMACTL[3:2] are other than 00.
This can result in severe display distortion if vertical sync on scan lines 251-253 (NTSC) or 275-278 (PAL) is
disturbed. Another side effect is that GTIA will continue to process player/missile graphics and P/M collisions in
the non-blanked regions.
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4.7 Scrolling

Normally, a playfield can only be scrolled by changing the memory scan pointer used to begin fetching data. This
restricts scrolling to byte granularity, which is fairly large on-screen for most display modes. ANTIC has support
for both fine horizontal and vertical scrolling, which allows playfields to be scrolled more finely than by LMS
instructions.

Enabling horizontal scrolling

Bit 4 of a display list instruction enables horizontal scrolling for that mode line. This enables the fetch of extra
playfield data and then shifts the playfield by the value specified in the HSCROL register, specified as the
number of color clocks to shift the playfield right from 0-15. For a scroll value of 0, the visible playfield image is
aligned as if the wider playfield were simply windowed to the requested width.

The same number of color clocks is displayed as without scrolling, so there are no visible scroll artifacts on the
sides with horizontally scrolled narrow or normal width playfields. A wide playfield will shift in background color
on the left with increasing scroll values, and also show a few color clocks of garbage on the rightmost border.

Effects on playfield DMA

Enabling horizontal scrolling increases the fetch width by one level, so a narrow playfield fetches the same data
as a normal playfield, and a normal playfield fetches a wide playfield's worth of data. This increases the number
of bytes per scan line accordingly, which must be taken into account when laying out playfield data. It also
results in more playfield DMA cycles, impacting CPU speed and DLI timing. There is no change in fetch width for
wide playfields.

Playfield DMA is delayed by one cycle for each increase by two in the HSCROL value. Even and odd scroll
values have the same DMA timing and are differentiated by an optional single color cycle delay within ANTIC.
With normal or wide playfields, the shift in DMA timing results in some DMA cycles being dropped near the end
of the scan line. While ANTIC doesn't halt the CPU during these cycles, it does still fetch data from the bus into
internal memory and increment the memory scan counter.

Scrolling high-resolution modes

High resolution modes cannot be scrolled with single pixel accuracy. It is only possible to scroll by pairs of pixels
at a time because HSCROL only has color clock precision.

Scrolling GTIA modes

In GTIA modes, data from adjacent color clocks are paired together by GTIA to form 4-bit pixels. The pairing is
determined relative to horizontal blank and is not affected by horizontal scrolling. This means that for proper
scrolling of these modes HSCROL should be set to even values only. If odd values are used, ANTIC will delay
the playfield data by a color clock unbeknownst to GTIA, resulting in the wrong pairs of bits being merged
together into pixels.

Changes to HSCROL between rows of a mode line

For mode lines that are more than one scan line tall, it is possible to change HSCROL between scan lines within
that mode line. This makes it possible to shear the mode line. The internally buffered data is replayed relative to
the start of each scan line, so it moves as expected.
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Figure 3: Effect of vertical scrolling on mode lines

Vertical scrolling

Vertical scrolling in ANTIC is controlled by bit 5 of a display list instruction. When bit 5 is set, the VSCROL [D405]
register modifies the height of selected mode lines in the display list to allow portions of the display to be scrolled
on a scan line basis. When the vertical scrolling bit changes from a 0 to a 1 on adjacent mode lines, the first line
for which it is set is shortened by starting it at the scan line specified by VSCROL. Similarly, when it changes
from a 1 to a 0, the first line for which that bit is reset is also shortened by ending it at that scan line. This means
that a vertically scrolled region consisting of three mode 2 lines will have bit 5 set on the first two lines and
occupy (8-VSCROL) + 8 + (VSCROL+1) = 17 scan lines instead of the usual 24.

VSCROL and the row counter are both 4-bit counters regardless of mode, and odd effects can be created by
setting them to out of range values. For instance, a mode F scan line is only one scan line high and ordinarily
vertical scrolling doesn't make sense. However, if VSCROL is set to 13 upon entering such a scan line, the row
counter will count from 13 to 0, creating a mode F region where each pixel is four scan lines tall, but the DMA
overhead is still only for one scan line. This is similarly possible when exiting the vertically scrolled region by
setting VSCROL to 3 so that the row counter runs from 0 to 3. This creates the so-called “GTIA 9++" mode
where GTIA modes can be run with lower vertical resolution with much lower DMA overhead than if LMS lines
were used to produce the same effect.

There are different deadlines for VSCROL changes depending on what specifically is affected. For determining
the initial row counter when entering a vertical scrolling region, VSCROL must be written by cycle 0, and for
determining the final row for the end of a scrolled region, it must be written by cycle 108. The six clock window
between these deadlines can be abused in order to halve the number of DLIs required to implement a turbo
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Figure 4: Abusing vertical scrolling in the “GTIA 9++" mode

mode. This is done by writing VSCROL twice in quick succession, with the first value terminating the current
mode line and the second value setting the height of the next. Finally, VSCROL must be written by cycle 5 to
affect DLIs.

Vertical scrolling regions do not have to exclusively use the same mode, as the vertical scrolling functionality
only affects the starting and ending mode lines via row count.

Blank mode lines ($x0) are always considered to have the vertical scroll bit cleared since the scroll bits are used
for a blank line count instead. The blank line is still subject to height changes if it ends a vertically scrolled
region, however. Jump instructions ($x1) can also have their height modified in the same way.

Mode lines with unusual height

All mode lines can be extended beyond their normal height up to 16 scan lines through vertical scrolling.
IR mode 0 lines are always blank, no matter how high.

IR mode 1 lines are always blank, but when extended beyond one scan line, re-fetch DLISTL and DLISTH on
each scan line.

For IR mode 2, rows 8-9 are blanked for characters $00-5F and $80-BF the same way that they are for IR mode
3. Rows 10-15 are the same as rows 2-7.

For IR mode 3, rows 10-15 are the same as rows 2-7.

For IR modes 4 and 6, rows 8-15 are the same as 0-7.
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For all bitmap modes (IR modes 8-15), all rows are the same. Regardless of how high the bitmap mode line is or
the starting row, the data fetch still always only occurs on the first scan line.

It is possible to extend mode lines beyond even 16 scan lines by changing VSCROL in the middle of the mode
line. Since the delta counter (row counter) is only 4 bits wide, rows 0-15 are repeated until the mode line ends.

Mode 8/9 horizontal scrolling bug

IR 8 and 9 mode lines can be corrupted if they follow a horizontally scrolled mode line at normal or wide width.
This occurs when the prior line uses IR modes 2-5 or D-F with HSCROL >= 10, or modes 6-7 or A-C with
HSCROL >= 14. When this happens, the memory scan counter is incorrect unless reset with an LMS instruction,
pixels are shifted out at incorrect rates, and scan lines within the mode 8-9 line are not aligned properly. This bug
can occur regardless of whether the mode 8/9 line is horizontally scrolled, although the artifacts are different.

The effects can also carry over into subsequent mode 8/9 lines:
« Non-scrolled IR mode 8/9 line:
o Following mode 2-5/D-F, HSCROL=A-B or E-F: Corruption carries over to subsequent scan lines.
o Following mode 2-5/D-F, HSCROL=C-D: Resolves itself within two scan lines.
o Following mode 6-7/A-C, HSCROL=E-F: Corruption carries over to subsequent scan lines.
« Scrolled mode 8/9 line:
o Following mode 2-5/D-F: Resolves itself within three scan lines.
o Following mode 6-7/A-C: Resolves itself within two scan lines.
The effect does not occur with narrow playfield width. The cause of this bug is the playfield DMA clock failing to

stop properly; see Abnormal playfield DMA for details.

4.8 Non-maskable interrupts

ANTIC can assert two types of non-maskable interrupts to synchronize the CPU to the display. Vertical blank
interrupts (VBIs) occur at the end of the displayable region and are used to synchronize to frames. Display list
interrupts (DLIs) occur in the middle of the displayable region and are used to effect mid-screen changes that are
not possible through the display list alone.

Enabling interrupts

Setting bits 6 and 7 of NMIEN enable DLIs and VBIs, respectively. Once an interrupt is enabled, ANTIC will then
assert an NMI on the CPU at the beginning of scan line 248 for VBIs, or the last scan line of a DLI-enabled mode
line. The NMI handler will then begin execution on the next instruction boundary at cycle 10 or later.

NMIEN must be written by cycle 7 to enable an interrupt and by cycle 8 in order to disable it.
Triggering a DLI

To trigger a DLI, bit 7 should be set on a display list instruction. This causes ANTIC to fire an NMI at the start of
the last scan line for that mode line. Typically the DLI interrupt handler will then issue an STA WSYNC in order to
synchronize to the end of the scan line, enabling it to write to hardware registers just prior to the next mode line
at a time where the user will not see artifacts from the changes.

You can set the DLI bit on any mode line, including a blank mode line. The strangest use is when the DLI bit is
set on a wait for vertical blank instruction ($C1); this causes a DLI to be issued on every scan line until vertical
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blank begins at scan line 248. Obviously, the DLI must be very short to run reliably in this situation, but it is
possible.

If vertical scrolling causes a mode line with a DLI to be shortened, the DLI will still fire at the end of the shortened
mode line, and just prior to the next mode line. This can cause surprises if a DLI is attempted at the start or end
of a vertically scrolled region, because this can cause the DLI to occur on the more strongly contended first scan
line.

Reading interrupt status

Since all NMis from ANTIC route through a single vector on the CPU, the NMIST register is used to determine
the interrupt source. Bit 7 indicates a DLI, bit 6 indicates a VBI, and bit 5 indicates that the system reset button
was pressed (400/800 only). The status bits in NMIST are independent of the enable bits in NMIEN: interrupt
status is reported even for disabled interrupts.

The reset (RNMI) bit stays latched until cleared by NMIRES, but the VBI and DLI bits are mutually exclusive: the
DLI bit is cleared at scan line 248, and the VBI bit is cleared whenever a DLI occurs. This happens regardless of
whether either interrupt is masked in NMIEN. This means that it is generally unnecessary to test the VBI bit or
write to NMIRES past boot — the NMI routine can test bit 7 for a DLI, bit 5 for reset, and then assume a VBI
otherwise. It also means that it is possible to use DLIs passively by polling for them instead of using an interrupt
handler.

NMIST bits 6 and 7 are set starting on cycle 7 of a scan line where a VBI or DLI is active. Clearing those bits by
writing NMIRES does not prevent the interrupt from firing, but can confuse an NMI dispatch routine.

Interrupt dispatch timing

The earliest that the CPU can normally begin execution of the seven-cycle sequence to enter the NMI handler is
cycle 10, with additional delays as needed to finish the current instruction. However, if an IRQ triggers starting at
cycles 5-9, its interrupt sequence can be co-opted by the NMI, allowing the NMI to execute correspondingly
earlier.

If an interrupt is enabled on exactly cycle 7 of a scan line, NMI timing is delayed by one cycle to cycle 11.
DLI timing

Display list interrupts have extremely critical timing for two reasons: they have to change hardware registers
within a very narrow window of time (usually horizontal blank), and they need to execute quickly to avoid
conflicting with each other or stealing too much CPU from mainline and IRQ routines. As such, it is very useful to
count exact cycles for DLI execution.

DLI execution proceeds as follows™:
e ANTIC pulls NMI at cycle 8 at the beginning of a scan line, right after display list and P/M DMA.
e The 6502 requires two cycles to acknowledge the NMI*,
e 0-6 cycles pass as the 6502 finishes the currently executing instruction.
e Interrupt entry takes 7 cycles.

Thus, if you are writing a custom NMI handler, the earliest that the handler will run is cycle 17. Note that DMA
contention will slow down this sequence, and it's virtually guaranteed that at least refresh DMA will interfere
starting with cycle 25.

[15] De Re Atari also has a good description of DLI timing and explains how to break a DLI routine into phases by timing requirements.
[16] [MOS76] 38
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If the OS handler is used, then the OS will execute a BIT NMIST / BPL not taken / JMP (VDSLST) sequence
before executing your handler, resulting in an additional 11 cycles of delay. Including refresh DMA, your handler
will execute starting on cycle 28-36.

At this point, the normal procedure is to save registers as needed, load up registers with needed values, STA
WSYNC, and then write values to hardware registers as quickly as possible during horizontal blank. Afterward,
the exit path will frequently spill into the middle of the next scan line, but that is not nearly as critical.

Note that these timings assume that the DLI is occurring on a blank mode line. Any non-blank line will require
playfield DMA cycles that will significantly delay interrupt routine execution: a normal-width mode 0 line will shift
the entry window for the OS case to cycles 36-44, and horizontal scrolling or wide playfields makes this worse.
Extra care is required when using DLIs around vertical scrolling, because it can shorten a mode line to only the
first scan line, causing a DLI to fire on a scan line where the active region is blocked by solid playfield DMA. The
extreme case occurs if the next mode line is also a character mode line, which can result in so much DMA
contention that two entire scan lines pass before the 6502 can even enter the DLI handler.

Missed NMis

If the 6502 responds to an IRQ starting at exactly cycle 4, any NMI that ANTIC would have triggered on cycle 8
will be lost.* This happens whenever the IRQ acknowledgment sequence occurs over cycles 4-10 and includes
DLls, VBIs, and on the 400/800, the SYSTEM RESET interrupt. NMIST is still updated as usual, however. The
most visible artifact caused by this problem is glitching on screen if you attempt to use DLIs while an SIO
transfer is in progress. However, it can happen with any IRQ source, including POKEY timers and the keyboard.
It can also occur with an exactly timed BRK instruction. It cannot, however, occur with a regular instruction, not
even one that takes seven cycles (INC abs,X).

DLIs and writes to VSCROL

A vertically scrolled region ends when the row counter matches the value in VSCROL. Normally, this happens
shortly before the display list fetch at the end of the scan line. However, when a DLI is requested on the ending
mode line, ANTIC must determine the end of the mode line much earlier in a scan line. Specifically, this happens
shortly before the DLI would occur. A write to VSCROL that affects whether a DLI occurs on a scan line must
occur by cycle 5. Writes after that point will be too late to block or trigger the DLI, but will still affect the height of
the mode line.

System Reset NMI

ANTIC supports a third type of NMI, triggered by the System Reset button on 400/800 models. On these models,
the System Reset button asserts the /RNMI input on ANTIC, and once this is held across the leading edge of
VBLANK, the Reset NMlI is triggered.

The Reset NMI is synchronized to the VBI, so it will always happen at the start of VBLANK and both the VBI and
RNMI will trigger together. Both bits 5 and 6 of NMIST will also turn on, so the NMI handler must give the RNMI
priority over VBI processing and trigger a warm start when bit 5 is set. All systems that use the RNMI also have a
fixed OS and NMI vector, so ordinarily this is always handled by the OS before user code can see it.

As the Reset NMI cannot be masked, the OS cannot defend against it occurring before cold start initialization
has completed. User manuals therefore politely ask the user to not hold System Reset on power-up to avoid
premature warm start.

On the XL/XE series, the Reset NMI is unused and not connected; the System Reset button asserts the reset
line across the system instead. However, it is still possible for the RNMI status bit to be set in NMIST as it is not

[17] Speculation on the AtariAge forums is that this is caused by a bug in ANTIC, which does not assert the NMI line long enough for the
CPU to reliably acknowledge the interrupt.

Chapter 4 - ANTIC 73



Altirra Hardware Reference Manual Created by Avery Lee

cleared on power-up or reset. Once it has been cleared, it will no longer become set again, even if the Reset
button is pressed.

4.9 WSYNC

A write to WSYNC [D40A] halts CPU execution until the end of a scan line, allowing the CPU to synchronize to
the display. One more cycle elapses before the CPU is halted until cycle 105, when execution resumes around
the start of horizontal blank. Because the CPU usually gets to execute the first cycle of the next instruction, this
appears as if the instruction started on cycle 104. There are, however, three circumstances that can change this
behavior:

o If the cycle immediately after writing WSYNC is blocked.

In this case, the CPU doesn't get to execute the first cycle of the next instruction, and that instruction
starts from the beginning as usual on cycle 105.

o If playfield DMA extends to cycle 105.

Wide playfields, normal playfields with horizontal scrolling, and narrow playfields with high horizontal
scroll values can encroach on cycle 105. This causes a one-cycle delay in the CPU restart.

o If refresh DMA extends to cycle 105 or 106.

The first scan line of a character mode line can incur solid playfield DMA during the active region such
that refresh DMA is pushed all the way to the end of the scan line. This can cause refresh DMA to
occupy cycle 105, resulting in a one-cycle delay for the CPU. If playfield DMA is already occupying cycle
105, however, then it will push refresh DMA to cycle 106, resulting in a two-cycle delay.

These factors mean that there can be up to a three cycle variance in when an instruction following a write to
WSYNC finishes execution, not counting interrupts. Therefore, if you are attempting to use a write to WSYNC to
establish an event at an exact time on a scan line, your best bet is to write to WSYNC twice during vertical blank
or during blank mode lines, ensuring that no DMA interference occurs. You should also ensure that a DLI or VBI
does not take place on the scan line as otherwise the interrupt is guaranteed to fire immediately after the
instruction that writes to WSYNC.

Interrupt delays due to WSYNC

Because the 6502 can only respond to interrupts at the end of an instruction, writing to WSYNC can delay
interrupt response by the duration of the WSYNC delay — the CPU cannot respond to interrupts until the WSYNC
delay ends at the beginning of horizontal blank. This can especially be a problem for DLIs, and thus sometimes
polling VCOUNT is a popular alternative.

WSYNC works by pulling the RDY line on the 6502 low, which causes it to extend the next read cycle until RDY
goes high again. On stock hardware, this is always an instruction fetch since the write(s) to WSYNC can only
occur at the end of the previous instruction and thus RDY will get pulled on the opcode fetch or the second
instruction byte fetch. In both of these cases, the next instruction has already started and thus is guaranteed to
complete. Thus, the CPU will execute the write to WSYNC, the following instruction, and then begin the interrupt
acknowledgment sequence.

The exception is if the NMI occurs early enough during the instruction that writes to WSYNC to trigger the
interrupt sequence immediately after it. In that case, the “next instruction” that the 6502 will stop on during the
WSYNC wait will be the interrupt acknowledgment sequence instead of the following instruction. The interrupt
handler will execute right after the WSYNC write instruction.
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Deadline for writes to WSYNC

Writes to WSYNC up to cycle 103 wait until the start of horizontal blank on the current scan line. A write to cycle
104 or later is too late and causes a wait until the start of horizontal blank on the next scan line.

Read-modify-write instructions

Using a read-modify-write instruction such as INC or DEC to write to WSYNC causes special behavior because
this is the only case where the cycle immediately following the write to WSYNC is another write cycle.*® The
6502 does not respond to RDY during a write cycle and therefore always performs this write on the next
available cycle regardless. As a result, an INC WSYNC instruction has the useful behavior of ignoring whether
the next cycle is occupied by DMA, with the next instruction starting on cycle 105.

The deadline for the last cycle of a RMW instruction to write to WSYNC is still cycle 103. If the instruction
executes one cycle later such that two write cycles occur on cycle 103 and 104, the behavior is slightly different:
the next instruction will still start on cycle 105, but the second cycle of that instruction will be delayed until cycle
105 on the next scan line.

The 65C02 and 65C816 have different behavior when RDY is asserted during writes which affects this behavior.
The 65C02 will stop on a write cycle, , so it is best to avoid relying on this behavior if compatibility with CPU
accelerators is desired.

Bus activity during WSYNC

Because WSYNC works by asserting the RDY signal to the CPU, it effectively causes the CPU to retry its current
read cycle repeatedly until RDY is negated. This will ordinarily be either the first or the second instruction byte of
the next instruction after the write to WSYNC. Ordinarily this is of no consequence unless the address
corresponds to a read-sensitive hardware device or the WSYNC wait occurs during a period when phantom
DMA is occurring (see Scan line timing and Player/missile graphics).

4.10 VCOUNT

The VCOUNT [D40B] register reflects bits 1-8 of the vertical scan counter. Bit O is not connected, so this only
permits two-line resolution. For an NTSC machine, VCOUNT counts from $00 to $82; for PAL, it counts to $9B.

VCOUNT increments during horizontal blank so that the new value is seen starting on cycle 111 prior to that
scan line. For instance, for the first scan line in the visible region (Y=8), VCOUNT can be read as $04 for three
cycles (111-113) prior to the first missile fetch for the screen (0). Similarly, for VCOUNT reads $7C for 13 cycles
prior to the earliest point where the 6502 starts interrupt knowledgment for the VBI (10).

If you are using VCOUNT to check for a scan line near the top of the screen, consider using a greater-equal
check rather than an equality check, as otherwise the test can lock up if the VBI handler takes too long to
execute. This is a common cause of lockup when programs meant for PAL are run under NTSC, where there is
much less vertical blank time.

End-of-frame anomaly

ANTIC requires one additional cycle to detect that the vertical counter has hit the end of frame value and to reset
it to $00. This means that reading VCOUNT on exactly cycle 111 of the very last scan line will give $83 (NTSC)
or $9C (PAL), which correspond to scan lines 262 and 312, respectively; starting with cycle 112, it reads $00.
This is the only cycle in the frame where this highest value can be seen and is thus extremely rare, but it could

[18] The 6502 can actually run up to three write cycles back to back if you include the interrupt acknowledgment sequence, where
PCH/PCL/P are pushed onto the stack. However, since this is always to stack locations in page 1, WSYNC cannot be involved.
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be a surprise to a DLI handler using VCOUNT to index tables.

4.11 Playfield DMA

Fetch rates

ANTIC supports three different fetch rates for playfield DMA. The slowest rate is one fetch per eight cycles and is
used for modes 8 and 9. The medium rate of one fetch per four cycles is used for modes 6-7 and A-C. The
fastest rate of one fetch per two cycles is used for modes 2-5 and D-F.

During the first scan line of a character mode, ANTIC fetches both character names and character data. The
data fetch occurs three cycles after the corresponding name fetch. For modes 2-5, this causes ANTIC to occupy
the bus with playfield DMA continuously with name and data fetches for a large portion of the scan line.

Line buffering

A 48 byte buffer within ANTIC is used to store graphic data for a single scan line. Its purpose is to buffer data for
use on repeated scan lines, reducing DMA overhead. For bitmap modes, it allows ANTIC to only read graphics
data for a mode line once, during the first scan line. For character modes, it holds the character name data which
is then repeatedly used to fetch each scan line of character data from the character set.

Because only character names are buffered in character modes and not character data, the two text modes that
have double-height characters — modes 5 and 7 — must still fetch character data on every scan line even though
half of the fetches are redundant.

Loading the line buffer

The line buffer is loaded during playfield DMA on the first scan line of a mode line during character name or
bitmap graphics fetches. Character data fetches are not loaded into the line buffer. During normal operation, this
loads 8, 16, or 32 bytes for a narrow playfield, 10, 20, or 40 bytes for a normal-width playfield, or 12, 24, or 48
bytes for a wide playfield.

If playfield DMA is disabled during portions of the first scan line, the DMA cycles are disabled but the loads still
occur at the standard times, loading the current values of the bus as bitmap or character data. The internal
address counter also continues to advance as usual, so if playfield DMA is re-enabled later in the scan line loads
into the buffer will resume with the correct internal address for each horizontal location. However, if playfield
DMA is disabled early enough so that the playfield never starts on the first scan line, no loads will occur and the
line buffer will not be modified at all.

The line buffer is never cleared. Narrow or normal width playfield loads preserve the unused contents at the end
of the line buffer. It is not changed by a blank mode line or a jump and the contents also persist across vertical
blank. By carefully toggling playfield DMA and stretching mode lines through abuse of vertical scrolling, it is
possible to fill the screen with playfield with reduced or even total absence of playfield DMA cycles.

Line buffer addressing

The line buffer is addressed such that the first location is always accessed at the playfield start position. This
means that if the same data is replayed with different start positions — either through varying HSCROL with
horizontal scrolling or by varying playfield fetch in DMACTL — the displayed graphics will shift to follow the
change in the left playfield border.

If the mode line is changed, causing a change in interpretation or in data rate, the buffered data is replayed just
as if it were fetched from memory. For instance, if the line buffer is loaded with a normal mode E line and then
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replayed in mode 8, the first 10 bytes of the mode E line will be reinterpreted as mode 8 data.
Dynamic changes to playfield width

The playfield width bits in DMACTL][1:0], and the horizontal scroll position bits in HSCROL[3:1], determine the
start and stop positions of the playfield on each scan line. Normally, ANTIC starts the playfield at the start
position and stops the playfield at the stop position. Moving the timing of the start and stop positions dynamically
can cause unusual playfield widths.

For the playfield start position, the deadlines for setting the playfield start position are cycles 24, 16, and 8 for
narrow, normal, and wide fetch widths. Bits 1 and 0 of DMACTL must be set to the desired value by these cycle
numbers to take effect. When horizontal scrolling is active, the deadline is delayed by one additional cycle for
every increase by two in the HSCROL value. Various writes then have the following effects:

e Moving the start later (narrower fetch width or greater scroll value) takes effect as expected if done by
the deadline, and is ignored for the current scan line if done too late.

e Moving the start earlier will still take effect if written by the deadline for the new width (earlier deadline). If
the start is moved earlier by the deadline of the old position and after the deadline of the new position,
the playfield will not start at all since the start has been moved back behind the current position.

The playfield stop position acts similarly, with corresponding deadlines of cycles 88, 96, and 104. Moving the
stop later by the earlier deadline extends the playfield to the farther stop position. Moving the stop earlier behind
the current position extends the playfield to the wide stop position, which is always active.

By changing the width and horizontal scroll values on the fly, it is possible to start and stop the playfield at
mismatched positions. For instance, changing the playfield width from narrow to normal in the middle of the scan
line with mode E will extend the playfield on the right side and cause additional bytes to be fetched. The resulting
playfield is 144 color clocks wide and advances the memory scan counter by 36 bytes.

Warning

It is easy to accidentally hit one of these corner cases when changing DMACTL from a DLI handler, since
the window for cleanly changing the playfield width is very narrow. If you are using WSYNC to
synchronize, you only have a few instructions afterward to write DMACTL before you are in the danger
zone. Timing for changing DMA parameters is much tighter than those for display parameters, so change
DMACTL before modifying color registers. Symptoms that you are hitting DMACTL too late include losing
a line when trying to enable DMA, gaining an extra line when trying to disable it, or having subsequent
playfield addressing screwed up unless LMS instructions are added to the display list.

Disabling playfield DMA

Setting DMACTL bits 1-0 to %00 disables the playfield, shutting off both DMA cycles and the display. The
playfield is always absent (background color) whenever playfield DMA is disabled. If it is disabled in the middle of
an active playfield, it vanishes until re-enabled. This is true even in high-resolution modes: background is
displayed, not PF2.

If playfield DMA is disabled before the playfield starts, the memory scan counter and line buffer are not updated.
However, if disabled after playfield DMA starts, the memory scan counter continues to count and the line buffer is
still loaded according to the current DMA pattern.

Mid scan line changes to playfield DMA

Changing the playfield DMA mode via the low two bits of DMACTL in the middle of a scan line has a number of
interesting effects. Much of this is related to the scan line buffer within ANTIC, which buffers some but not all of
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the data between scan lines. Specific cases:

e InIR modes 2 and 3, the invert state is also not updated while DMA is disabled, resulting in the blanked
scan line from the previous case displaying either PF2 or PF2L1 depending on the last seen invert state.
This only occurs on the affected scan line; subsequent scan lines will once again show the correct invert
state according to the buffered character names in the line buffer as long as DMA is re-enabled.

e For mode lines that span multiple scan lines, suspending playfield DMA for a portion of the first scan line
results in portions of the line buffer not being updated. Previously written data in those portions are
reused in display for subsequent scan lines. In character mode, this results in old character names being
used.

4.12 Abnormal playfield DMA

Under certain circumstances, ANTIC can lose track of playfield DMA such that it begins fetching playfield data
with an abnormal pattern, producing a garbled playfield. This can also scramble the display list, which can in turn
crash the CPU by issuing bogus DLIs. As these effects are very difficult to control, typically this condition is
simply an unwanted artifact to avoid.

DMA clock

There are two clocks within ANTIC that control playfield display, the DMA clock and the shift clock. Both are
constructed as shift rings with taps to read cycling bits and extra gates to inject or clear bits in the cycling
pattern. The first of these, the DMA clock, controls the timing of DMA cycles and the incrementing of the memory
scan counter. It runs at machine cycle rate and is either two, four, or eight cycles long depending on the fetch
rate required for the current playfield mode. Three taps off this clock produce the requests for character name,
bitmap data, and character data at 0, +2, and +3 cycle offsets, respectively.

A single bit is injected into the DMA clock at playfield start, and that single bit position is cleared at playfield stop.
The DMA clock is also unconditionally cleared whenever the current IR mode corresponds to a blank line or
jump, or during vertical blank.

Shift clock

The shift clock, on the other hand, controls the shifting of graphics data out of the graphic shift register. It is a
four-bit ring and runs at color clock rate, twice as fast as the DMA clock. There are taps at all four bits and either
one, two, or all four of them are enabled depending on the required shift rate for the graphic shift register, which
shifts either one or two bits per interval.

ANTIC clears both the shift clock and the shift register during special DMA time (cycles 0-7). The shift clock
starts running when bits are injected into it from the DMA clock by means of the bitmap or character data fetch,
synchronizing it to the arrival of the first graphics byte from either the bus or line buffer RAM. It is not stopped at
playfield stop, simply continuing to run to clear out the shift register.

Table 7 gives the rates for both clocks for each mode.

IR Mode DMA rate Shift rate Shift
mode
2,3,4,5 |Fast (every two cycles) Fast (1/cc) 2-bit
6,7 Medium (every four cycles) |Fast (1/cc) 1-bit
8 Slow (every eight cycles) Slow (1/4cc) 2-bit
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IR Mode DMA rate Shift rate Shift
mode
9 Slow (every eight cycles) Medium (1/2cc) 1-bit
A Medium (every four cycles) | Medium (1/2cc) 2-bit
B, C Medium (every four cycles) |Fast (1/cc) 1-bit
D,E,F Fast (every two cycles) Fast (1/cc) 2-bit

Table 7: DMA and shift clock rates by mode

Disrupting the DMA and shift clocks

As noted earlier, ANTIC stops the DMA clock by resetting a single bit in it at playfield stop time. Changing
registers mid-scanline in a way that shifts the playfield stop position can cause ANTIC to clear the wrong bit and
prevent it from stopping the DMA clock properly. When this happens, the DMA clock continues to run through
horizontal blank and into the next scan line. This causes several undesirable results:

- Playfield DMA continues across horizontal blank and into the next scan line. This also advances the
memory scan counter by additional steps, resulting in skipped playfield bytes. Note that playfield DMA
cycles are still suppressed during cycles 105-111 and 0, so any extra cycles during that window are still
virtual DMA cycles.

- DMA fetches can overlap. This can occur between playfield DMA itself — character name and character
data fetch — or with special DMA such as display list and player graphics fetches. When this happens,
the address used is the bitwise AND of all fetch addresses involved and the fetched data is used for all
of the DMA requests. A refresh DMA cycle cannot overlap, however, as it is only triggered by the
absence of other DMA requests.

« The clocks can run at faster than normal rate or with erratic timing. ANTIC can fetch continuously at one
fetch/cycle even in graphics modes if the DMA clock is disrupted. When the shift clock is disrupted
separately, pixels are shifted out to GTIA faster than normal for the mode line and 00 pixels are shifted
out whenever the 8-bit shift register runs out of data bits.

Disrupting the DMA clock with HSCROL

Once the DMA clock is running, ANTIC attempts to reset a single bit in the DMA clock at exactly two points: the
playfield stop position for the current width setting, and the playfield stop position for a wide playfield. The stop
positions for all playfield widths are multiples of eight cycles apart and thus the wide playfield stop aligns with the
DMA pattern started at any playfield width. Therefore, it is not possible to disrupt the DMA clock with width
changes alone as ANTIC will always be able to stop the clock on its second attempt and the playfield will only be
extended to the wide playfield stop position.

Horizontal scrolling is another story, as for every two color clocks in horizontal scroll the playfield start and stop
positions are shifted by one cycle. The cycle pattern for the ending HSCROL value must match the cycle pattern
of the starting HSCROL pattern for the DMA clock to stop properly. For instance, in mode 2 the DMA clock runs
at a rate of one fetch per two cycles, so the HSCROL bit 1 must match up for the start and stop patterns to line
up with even or odd cycle timing. Similarly, in mode 8, the clock is running at a rate of one fetch per eight cycles,
so HSCROL bits 1-3 must match exactly. When this occurs, playfield DMA will stop cleanly, although the scan
line may be an unusual number of pixels long.

When the start and stop patterns do not line up, the DMA clock will continue running. ANTIC will continue to set
and unset bits in the DMA clock on subsequent mode lines. Therefore, it is possible to build up or drop additional
fetch cycles, leading to progressively more or less screwy DMA patterns.
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What makes this bug especially problematic is that the DMA clock runs rather late into horizontal blank when
horizontally scrolling at wide fetch width. This means that it is easy to accidentally trigger it by changing
HSCROL on the fly in a DLI handler right after writing to WSYNC. The deadlines for affecting this behavior with
HSCROL are the same as for moving the playfield stop with DMACTL: the write must occur three cycles before
where the next character name fetch would occur in the pattern, or in a bitmap mode, five cycles prior to the next
graphics fetch. For a normal character mode playfield, this is on or before cycle 95 + HSCROL/2. ANTIC always
tries again at the equivalent wide stop, for which the write must happen on or before cycle 103 + HSCROL/2.
This means that in order for a horizontally scrolled normal or wide width line to display correctly, HSCROL should
not be rewritten before cycle 111, three cycles before missile DMA fetch.

Disrupting the DMA clock with mode switching

Abnormal DMA patterns can also occur simply with specific orders of mode lines where the DMA clock slows
down between the two mode lines. This happens because the DMA clock is always eight bits long even though
the ring part is restricted to four or two bits for medium and fast shift rates, and thus it takes four or six clocks for
any bits left in the clock to completely shift out. The DMA clock runs so late into horizontal blank when horizontal
scrolling is active at normal or wide playfield width that these latent bits can be recaptured when the ring part of
the clock is suddenly extended at the switch to the slowest speed. These extra bits then cause an abnormal
DMA condition.

For this problem to occur, a playfield character name fetch must have been scheduled within cycles 109-111 for
a character mode, or a graphics fetch within cycles 111-113 for a bitmap mode. The only conditions that can
cause this are:

e Horizontally scrolled normal or wide width mode line at fast DMA fetch rate (modes 2-5 or D-F), with
HSCROL >= 10.

e Horizontally scrolled normal or wide width mode line at medium DMA fetch rate (modes 6-7 or A-C), with
HSCROL >= 14.

e Existing abnormal DMA condition including those fetch cycles.

These fetches do not have to be actual DMA cycles as the DMA clock still runs during subsequent mode lines to
fetch from the internal line buffer. The bits captured during these 1-3 cycles then become extraneous fetches in
the 4-bit or 8-bit playfield DMA pattern for the next scan line.

Abnormal DMA patterns across scan lines

An abnormal DMA condition will persist across multiple scan lines as long as errant bits continue to cycle around
the DMA clock and it is not stopped by a blank line or other clearing condition. However, because the scan line is
114 cycles long and not evenly divisible by the length of the DMA clock, the abnormal DMA pattern will change
on each scan line when the DMA clock is operating in slow or medium speed modes where it is eight or four
cycles long. This can result in the abnormal pattern resolving itself after a few scan lines as ANTIC “sweeps”
over the abnormal pattern at different offsets, removing one or more errant bits each time.

As an example, changing HSCROL from $00 to $04 in the middle of a horizontally scrolled mode 8 line will shift
the offset of playfield DMA cycles from %10000000 to %00100000 after the start bit has been injected into the
clock, preventing the stop from occurring and causing the former pattern to stay in the DMA clock. However,
because 114 mod 8 = 2, the errant pattern will have shifted by two clocks on the next scan line, resulting in
subsequent extra DMA patterns of %00000010, %00001000, and %00100000. The last pattern lines up with the
normal pattern of HSCROL=$04, so the errant bit will be cleared by the playfield stop, ending the abnormal
DMA.

Similarly, if HSCROL is instead changed from $00 to $02, a four-line cycle of patterns %01000010, %01001000,
901100000, and %11000000 will result.
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Abnormal shift patterns

The shift clock is reset at the beginning of each scan line and initialized based on the pattern of DMA cycles
produced by the DMA clock, which means that the shift clock can only run abnormally if the DMA clock is
abnormal. However, the shift clock runs double speed at color clock rate and is only four bits long, which means
only two bits can be affected by the even and odd fetches from the DMA clock. Furthermore, mode 8 is the only
mode in which the shift clock can be disrupted because every other mode already requires the playfield shift
register to shift at least once per machine cycle anyway.

In mode 8, the shift pattern is abnormal if the DMA pattern includes both even and odd cycles. When this
happens, the shift clock then runs at double normal speed, producing pixels at two color clock resolution (80
across) instead of four color clock (40 across) resolution. If this causes the shift register to empty before it is
reloaded again, the background is produced (pixel code %00).°

In all modes, the additional DMA cycles will also result in extra loads into the shift register. The extra data is
ORed into the contents of the shift register. In character modes, this happens prior to the effects triggered by
character name bits 6 and 7, such as inversion/blinking in IR modes 2 and 3 and the color changes in IR modes
4-7. This means that the next time a character name is read, the new values of bits 6 or 7 will immediately take
effect, even for bits that have yet to shift out of the playfield shift register.

Abnormal line buffer addressing

Ordinarily, ANTIC never advances beyond the 48™ location in the line buffer. An abnormal DMA clock, however,
can advance the line buffer address faster at up to double normal speed, causing the line buffer address to
exceed that limit or even wrap. The internal address counter is a 6-bit maximal length polynomial counter and
has a sequence of 63 addresses. The first 48 addresses correspond the internal RAM and there is no response
to the last 15 addresses. This means that when the line buffer is loaded, the entire 48 byte RAM is loaded before
15 fetches are discarded, and then the RAM is reloaded again. Similarly, during display, the 48 byte buffer is
displayed and then the last 15 locations result in $FF data.

The second anomaly that can occur is that ANTIC can skip addresses in the line buffer when reading from it on
back-to-back cycles in a bitmap mode. Specifically, whenever there are back-to-back cycles, all but the last fetch
of the sequence will use the data from one later position. As a result, the value that should have been fetched
first will be dropped and the last value will be used twice. This happens even on the first line where DMA fetches
occur, because the data is first written to and then read from the line buffer. Only the reads from the line buffer
are affected; the writes occur to the expected addresses and the buffered data will be normal if replayed on a
subsequent mode line with a normal DMA clock.

Overlapping DMA

Abnormal DMA patterns can cause DMA cycles to overlap. In a character mode, character name and data
fetches can occur at the same time when the DMA clock causes both even and odd fetches. When this occurs,
the bitwise AND of the two addresses is used as the fetch address and the returned data is used for both
fetches.

A DMA conflict can also occur between special DMA at cycles 0-7 and playfield DMA. As with playfield-playfield
DMA conflicts, the bitwise AND of all addresses is used and the fetched data goes to all requests. However, this
can occur even if playfield DMA is disabled in DMACTL. Display list DMA, missile DMA, and player DMA can be
affected by this conflict.

[19] The reason this can happen, despite the DMA clock also running at double rate, is that the extra bits in the DMA clock may not be
evenly spaced. A second fetch can partially overlap the first in the shift register, leaving a gap.
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Warning

The potential for overlap with display list DMA is what makes the abnormal playfield DMA bug a serious
one. If it just affected the playfield, then the only problem would be visual glitching. When abnormal
playfield DMA overlaps display list DMA, however, it can send the display list execution off into the weeds.
This can then cause wild display list interrupts to fire and the program to crash.

Resetting the playfield clocks

Whenever an appropriate playfield stop position is reached, ANTIC clears bits from the DMA clock. If there are
no other bits left flying around in the clock, the abnormal condition is ended. Entering vertical blank or executing
blank mode display list instructions ($x0 or $x1) will also unconditionally clear the DMA clock and end any
abnormal DMA pattern.

Switching to a mode line with a faster shift rate will shorten the recirculating portion of the DMA clock. Once this
happens, any extraneous bits in the non-circulating portion will shift out and no longer contribute to abnormal
DMA.

Since the shift clock is reset by ANTIC at the beginning of each scan line, clearing an abnormal condition in the
DMA clock will automatically fix the shift clock.

4.13 Player/missile DMA

ANTIC can fetch graphics data for players and missiles on behalf of GTIA. Bit 3 of DMACTL enables player
DMA, and bit 2 of DMACTL enables missile DMA. Missile DMA is forced on if player DMA is enabled in order to
preserve proper timing against GTIA.

Vertical resolution

Bit 4 of DMACTL switches between two-line and one-line resolution. This simply changes the addressing that
ANTIC uses to fetch player data. If one-line resolution is selected (bit 4 = 1), each player/missile occupies 256
bytes of memory and unique data is fetched per scan line. If two-line resolution is selected, each player/missile
occupies 128 bytes of memory and each byte is fetched twice on adjacent scan lines.

PIM graphics memory layout

The address of player/missile data is specified by PMBASE [$D407]. In two-line resolution mode, player/missile
data must be aligned on a 1K boundary and the upper six bits of the address are specified by bits 2-7 of
PMBASE. In one-line resolution mode, P/M data must be aligned on a 2K boundary and the upper five bits of the
address are specified by bits 3-7 of PMBASE, with bit 2 being ignored. However, bit 2 of PMBASE is still stored
and becomes active if resolution is switched back to two-line without writing to PMBASE again.

The P/M graphics memory is in turn split into 8 sections of 128 or 256 bytes each. The first three sections are
unused. The fourth section, starting at offset $0180 or $0300 from PMBASE, contains the four missiles; bits 7-6
correspond to missile 3 and bits 0-1 correspond to missile 0. The last four sections starting at $0200 or $0400
contain the graphics for players 0-3. Within each section, bits 0-7 or bits 1-7 of the vertical scan counter are used
as the offset for fetching graphics data.

P/M DMA timing

When enabled in DMACTL, player and missile data is fetched on each scan line within the visible region (8-247).
This means that in one-line resolution mode, the first and last 8 bytes of each section are always unused. Missile
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data is fetched during cycle 0 while player data is fetched during cycles 2-5.

In two-line resolution mode, bit O of the vertical resolution counter is ignored and each byte is fetched twice and
sent to GTIA on consecutive scan lines. This means that the P/M graphics can still change on each scan line if
the data is modified in between. The only difference between one-line and two-line resolution is in addressing.?

P/M DMA enable timing

Player/missile DMA must be enabled or disabled in DMACTL at least two cycles in advance to take effect. In
particular, disabling missile DMA only one cycle earlier at cycle 113 will not prevent missile DMA from
immediately occurring on the following cycle 0.

4.14 Scan line timing

Memory refresh DMA

Nine cycles of refresh DMA occur on every scan line in order to refresh DRAM, starting at cycle 25 and occurring
every four cycles after that. These refresh cycles occur even in vertical blank. Refresh DMA can be blocked by
playfield DMA, in which case the refresh cycle occurs on the next free cycle. Only one such cycle can be
deferred at a time and any additional blocked refresh cycles in a row are simply dropped. This only occurs in the
first scan line of modes 2-5, where memory is so contended that only 1-2 refreshes can fit.

In wide character modes, the final refresh cycle can be pushed all the way to the end of playfield DMA at cycle
105 or 106, resulting in an additional cycle of delay for a WSYNC on that scan line.

Data output from the RAMs is not enabled during refresh cycles and the data bus is undriven during refresh
cycles. This leads to either a pulled up or floating data bus condition, depending on the memory configuration.

Display list DMA

The display list requires one DMA cycle for each instruction byte, which occurs at cycle 1, between players and
missiles. Mode lines that perform an LMS or a jump also fetch an additional address word at cycles 6 and 7. This
fetch occurs at the beginning of the scan line where the mode line takes effect visually.

For modes that span multiple scan lines, the display list fetch only occurs on the first scan line. The jump and
wait for vertical blank (JVB) instruction is also only fetched once regardless of the number of scan lines until
vertical blank.

Playfield DMA

Three playfield widths are available: narrow, normal, and wide. Normal playfields are 80 cycles wide, while
narrow playfields are 64 cycles and wide playfields are 96 cycles long. All fetch windows have the same center,
with each wider setting adding 8 clocks on each side. There is a hardware stop that prevents playfield DMA from
going beyond cycle 105. Any fetch cycles that would occur on cycle 106 or later are suppressed, although the
playfield memory address is still incremented.

Enabling horizontal scrolling automatically causes narrow playfields to use the normal fetch window and normal
width playfields to use the wide fetch window. No additional data is fetched for wide scrolled playfields.
Horizontal scrolling causes the playfield fetch window to be delayed by one cycle for every two color clocks of
scroll. The additional color clock delay required by odd scroll values is given by internal buffering.

[20] [AHSO00] p.45 contains a couple of errors. Each fetched missile or player consumes 240 bytes per frame, not 226, and two-line
resolution mode takes the same number of cycles as one-line mode, not half.
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Mapped mode playfield DMA

The mapped graphics modes have three horizontal densities, resulting in fetches every eight clock cycles
(modes 8-9), four cycles (modes A-C), or two cycles (D-F). These occur on the first scan line of the mode. ANTIC
internally buffers the data so that modes that span more than one scan line do not need to fetch any data on
subsequent scan lines. This is used to powerful effect in the so called “GTIA 9++” modes, where mode F lines
are extended to four scan lines by vertical scroll trickery, resulting in one-fourth vertical resolution with one-fourth
the bandwidth requirements.

Mapped playfield DMA begins at clock 28, 20, or 12 depending on width.
Character mode playfield DMA

Character modes have two horizontal densities, resulting in name fetches every two clock cycles (modes 2-5) or
every four clocks (modes 6-7). The character names are fetched starting at clocks 26, 18, and 10 for the various
widths.

Additionally, in these modes the character data itself must be fetched. The data fetch occurs three clocks later
than the name fetch. Although the names are buffered internally by ANTIC, the character data isn't, and is
always fetched for each scan line regardless of whether double-height modes are used (modes 5 and 7).

Virtual DMA cycles

Playfield DMA cycles that would occur on cycle 106 or later are blocked by the hardware and do not occupy the
bus or stop the 6502. However, ANTIC still reads the data bus and stores or interprets the data on those cycles.
This usually results in 6502 bus activity being loaded as playfield data. In rare cases, it is possible for a refresh

cycle to overlap with a virtual DMA cycle, resulting in floating bus data being used.

DMA timing charts

The following charts show the timing of per scan line DMA, based on various modes and settings. IR mode,
playfield width, P/M graphics, LMS instructions, and horizontal scrolling all affect DMA timing. Note that the
charts are arranged by fetch width, so a narrow playfield with horizontal scrolling is actually described by the
normal playfield chart. There are no charts for subsequent scan lines for mapped modes, as no playfield DMA
occurs in that case. HSCR refers to the HSCROL value, if horizontal scrolling is enabled; odd values have the
same DMA pattern as the next lower even value.
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ANTIC modes 2-5, mode line, wide playfield
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ANTIC modes 2-5, subsequent lines, wide playfield
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ANTIC modes 6 and 7, mode line, wide playfield
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ANTIC modes 6 and 7, subsequent lines, wide playfield
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ANTIC modes 8 and 9, mode line, wide playfield
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ANTIC modes A-C, mode line, wide playfield
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ANTIC modes D-F, mode line, wide playfield
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IPIayer/missiIe graphics IMemory refresh IPIayfieId DMA || Character map DMA | Display list DMA  Virtual DMA

ANTIC modes D-F, mode line, normal playfield
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ANTIC modes D-F, mode line, narrow playfield
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Event timing chart

Iss 89| 9o| 91 |92 |93 |94 |95| 9697 |98 |99 |1oo|1o1|102|103 04 105|106|107|108 109|11o 111 112|113|

N
o

0|1|2|3|4|5 6|7 8 10|11|12|13|14|15|16 17|18|19|20|21|22|23|24

©
[N

VSCROL set start Normal PF start (1) Normal PF stop (1) VSCROL end checld
DL DMA enable VBI/DLI triggered (2) Narrow PF start (1) Narrow PF stop (1)

VCOUNT increments
VSCROL/DLI check Wide PF start (1)

DLI/VBI bit setin NMIST WSYNC end VCOUNT rollover
Wide PF stop (1)

WSYNC deadline (3)
Figure 5: ANTIC event timing

The above figure shows the timing of various events within ANTIC and the available cycle times at which the CPU can read or write values in response.
These are marked on machine cycle boundaries, so only writes before the boundary will affect the event and only reads after the boundary will reflect it.
For instance, the narrow width playfield start boundary is between cycles 24 and 25, so a write to DMACTL to turn on the narrow playfield must occur on
cycle 24 or earlier. Similarly, the VCOUNT increment on a scan line will only be reflected in reads on cycle 100 or later.

(1) PF start/stop events are delayed by one cycle for every two increase in HSCROL when horizontal scrolling.
(2) 7-cycle NMI sequence normally starts at first instruction boundary on cycle 10 or later, unless overlapping an earlier IRQ.
(3) If read/modify/write instruction on 6502 or 65C816 (emulation mode), both write cycles must occur before this deadline.
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4.15 Cycle counting example

Let's assume that we want to schedule a series of palette color changes between lines of 40-column text (ANTIC

mode 2). To do this, we use the following DLI routine:

PHA
TXA
PHA
LDX
LDA
STA
STX
STA
PLA
TAX
PLA
RTI

NEWCL1
NEWCL2
WSYNC

COLPF1
COLPF2
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o 8 [16 24 32 40 48 56 64 72 80 88 96 [104  [112 |

PREV [NMI BIT BPL [JMP PHA [TXAPHA [LDX [LDA [STA [STX [STAPLA]
IRRRRRnnnnnnnnnnnnnnnnnnnnnnnnnnnnInmmnm

[PLA [rpLA [RTI |

I Memory refresh | Playfield DMA || Character map DMA | Display list DMA
Figure 6: DMA and CPU timing for DLI handler.

Cycle counting breakdown before the CPU is halted until cycle 105, after which X and A are pushed into
the PFO and PF1 color registers at cycles 107 and 111, respectively. Finally,

Figure 6 shows the DMA and instruction timing for the DLI handler. First, ~ the epilogue begins at cycle 112, where it takes 10 CPU cycles (11 machine

after receiving the NMI request at cycle 8 and acknowledging it at cycle 10, cycles) to restore A and X and another six cycles to exit the DLI handler.

the 6502 has to finish the previous instruction. The worst case of six clocks  There are a few aspects to note about this DLI handler. First, it doesn't write
is shown here. Afterward, it takes seven clocks for the 6502 to push PC and nMIRES: that is generally unnecessary for DLIs. Second, the horizontal

P onto the stack and to fetch the NMI vector. At this point playfield DMA blank region before the line to be modified is critical timing-wise. In this case

starts, which slows do_vvn the CPU; the first instruction doesn't execute until  thare would have been enough CPU time to STA WSYNC first and then both
cycle 28. From there, it takes 11 CPU cycles to execute the OS NMI handler, |54 and store the color values in HBLANK, but that's not always the case,

which actually takes 36 machine cycles with DMA contention, meaning that - gspecially with P/M DMA enabled or when the background color is involved.
the user DLI handler isn't entered until cycle 66. Second, the DLI handler consumes an entire scan line worth of CPU time
Once in the DLI handler, it takes 8 CPU cycles (16 machine cycles) to save d€spite only changing two registers and not setting up a subsequent DLI

X and A and 6 CPU cycles (12 machine cycles) to preload two colors. That's handler. In practice, this means that any large region that requires many per-
as much that can be done while still in the visible region, so on cycle 94, an scan-line register changes is better done with a kernel started by one DLI

STAWSYNC is executed. The first cycle of the next instruction is executed "ather than with multiple smaller DLIs.
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4.16 Examples

Zaxxon Il

This game uses a display list interrupt (DLI) on a scan line that is highly contended, with a scrolled normal width
playfield and P/M graphics active. As a result, the 6502 is unable to read NMIST until past the standard interrupt
cycle on the next scan line, and the DLI bit must remain active for more than a full scan line for Zaxxon to work
correctly.

Race in Space

Unusually, the interrupt flag is set on the wait for VBL instruction at the end of the display list for the title screen.
The game relies on the high number of interrupts that this generates; failing to generate an interrupt per scan
line results in the title screen scrolling very slowly or never completing.

Race in Space also uses player collisions against a hi-res (mode F) playfield.
Numen

A lot of tricks are used in this demo, but it almost immediately goes into the “GTIA 9++” mode where VSCROL is
alternated to generate mode F with four scan lines per row and one-quarter the DMA overhead.

Bounty Bob Strikes Back!

This game loops on an alias of the VCOUNT register, $D47B, and jams on startup if address mirroring is not
supported.

Chicken

The display list for Chicken contains a vertical scrolling region that ends on a blank mode line. The vertical scroll
interaction causes this mode line to be variably extended beyond its usual one-scan-line height.

Tarzan of the Apes

The mid-screen DLI routine for the title screen of this game expects VCOUNT to roll over prior to P/M DMA at
the start of the next scan line.

Atomix Plus!

There is a buggy loop in this game for copying memory below the kernel ROM ($D800-FFFF) that enables
ANTIC interrupts before re-enabling the kernel ROM. It relies on a DLI or VBI never interrupting the following
sequence:

LDA #$40
STA NMIEN
LDA #$01
STA PORTB

Chapter 4 - ANTIC 95



Altirra Hardware Reference Manual Created by Avery Lee

Pacem in Terris

One of the DLI handlers for the title screen attempts to change playfield width from narrow to normal by writing to
DMACTL, but misses the deadline doing so. The result is that the scan line is blank and the “Quasimodo” bitmap
is shifted one scan line lower than the display list would indicate.

Atari OS C: handler

The cassette (C:) handler in the Atari OS has a bug where it can rarely compute bogus baud rates due to
improper reading of VCOUNT. The OS tries to read both VCOUNT and a frame counter maintained by the VBI
and assumes that scan line 248 or higher (VCOUNT = 124) always occurs after the VBI, but this is not the case.
ANTIC triggers the VBI about a dozen cycles after VCOUNT increments to 124, so it is possible for
VCOUNT=124 to occur both before and after the VBI. The former causes an erroneous baud rate to be
computed by the OS.

4.17 Further reading

Consult [ATA82] for a overviews and register descriptions for ANTIC. Surprisingly, there is little, if any, additional
information in the formerly confidential chip document [AHS99]. A bit more information can be found in [AHSO00],
but the accuracy of the additional information appears questionable.

[CRAB82] notes a number of nuances about programming ANTIC, most notably the tricky timing in display list
interrupts. Note that there appear to be some slight timing discrepancies compared to the real Atari.
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5.1 Addressing

POKEY occupies the $D2xx block of memory. Only the lowest four bits are significant, so any access of the form
$D2xy accesses mirror x of register y. The canonical registers are at $D200-D20F.

Unassigned addresses

Reading locations assigned to POKEY but that don't correspond to a readable internal register return $FF, even
on machines with a floating data bus.

Stereo modification

A popular unofficial modification involves piggybacking a second POKEY onto the system and using address line
A4 to select between them. In that case, the even mirrors select the main POKEY, and the odd mirrors select the
secondary one. The secondary POKEY has less functionality available due to missing interrupt and 1/0O
connections.

5.2 Initialization

Power-up state

POKEY does not have a RESET line and therefore powers up in indeterminate state. Although various circuits
within the chip are biased toward particular states from a cold start, the initial state is not guaranteed and may
include interrupts being enabled in IRQEN and asserted in IRQST. Thus, IRQEN must be reset prior to clearing
the | bit on the CPU to avoid stray IRQs.

Initialization mode

Bits 0 and 1 of SKCTL normally control the keyboard scan and debounce features. However, clearing both of
those bits also activates another initialization function, which resets various clocks and state machines
throughout the chip. The following logic circuits are reset:

« 15KHz clock

+  64KHz clock

« 4-bit and 5-bit polynomial noise generators

e 9/17-bit polynomial noise generator (which includes RANDOM)
- Serial port input state machine and shift register

- Serial port output state machine

« The SEROUT valid flip-flop

- Keyboard scan (due to clearing bit 1)

These circuits are held in reset state until initialization mode is exited. For instance, while SKCTL bits 0 and 1 are
both cleared, any sound/timer channels using the 15KHz or 64KHz clocks will not count, as those clocks will be
frozen, and RANDOM wiill lock at $FF.

Initialization mode does not reset:
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« Interrupt enable (IRQEN) or status (IRQST)
- KBCODE

« SERIN

+ AUDF1-4, AUDC1-4, or AUDCTL

«  Timer counters

« Audio channel outputs

« Pot scan (although the pot scan will be suspended until init mode is ended, due to the frozen 15KHz
clock)

- The output of the serial output shifter, including the bit sent out the SIO DATA OUT line and driving two-
tone mode

Serial port reset

Setting the serial clock selection bits SKCTL (bits 3-5) to 0 resets the serial port circuitry. Therefore, SKCTL
should be set to $00 to initialize all POKEY functions.

Clock reset timing

The initialization function can be used to reset the 15KHz and 64KHz clocks to known offsets in the scan line. As
long as init mode has been enabled long enough for both clocks to reset fully, the clock offsets will be
determined by when init mode is exited. However, the design of the clocks causes the clocks to be reset to
partway through their cycles instead of the beginning.

Both clocks are polynomial counters with truncated cycles. The 15KHz clock is a 7-bit XNOR counter with a
polynomial of x"+x%+1. On a pattern of %1001001 (shifting left), a '1' bit is forced and a pulse emitted. This
occurs 78 cycles after the reset state of %0000000. The 64KHz clock is a 5-bit XOR counter with polynomial
x5+x3+1 and a forced '1' bit on %00010, occurring 19 cycles after the reset state of %11111. If IRQs are enabled
for unlinked timers using these clocks with period 0, the IRQ is asserted in IRQST 83 and 24 cycles after the
write to SKCTL that clears init mode.

5.3 Sound generation

POKEY has four audio channels with individual timers and audio output circuitry. Each channel has an
associated frequency register (AUDF1-4) and control register (AUDC1-4). In addition, there is a shared control
register (AUDCTL) for common functions.

Countdown timers

Each channel has an 8-bit countdown timer associated with it to produce clocking pulses. The period for each
timer is set by the AUDFx register, specifying a divisor from 1 ($00) to 256 ($FF). The countdown timer produces
a pulse each time it underflows and resets, which can then be used to drive an interrupt, the serial port, or sound
generation.

By default, timers use the default audio clock, which is selected by AUDCTL bit 0. Setting this bit to 0 selects the
64KHz clock, while setting it to 1 selects the 15KHz clock. It is not possible to use both the 15KHz and 64KHz
clocks at the same time, even on different timers. In addition, timers 1 and 3 can be switched to the fast
1.79MHz clock through AUDCTL bits 6 and 5.
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Timer period

For timers running at 1.8MHz with AUDFx = N, the period of the timer is N+4 cycles. +1 of this is because the
counter is reloaded on underflow and thus must count below $00. The other +3 is because of three cycles of
delay from the counter being split into multiple stages and for the underflow logic.

For timers using the 15KHz or 64KHz clock, the period is (N+1)*114 cycles for the 15KHz clock and (N+1)*28
cycles for the 64KHz clock. The three cycles of delay do not matter in this case because they are absorbed by
the delay until the next audio clock pulse, which occurs 114 or 28 cycles from the last pulse regardless of how
long the audio timer takes to reset. This also results in different timers using the same clock synchronizing to the
nearest 15KHz or 64KHz tick.

Some references show an additional factor of two in the relation between timer AUDF1-4 value and the
frequency. This is because in the common divide-by-two mode (distortion 10), each timer period causes the
output to toggle. The frequency of the resulting square wave is thus half the rate at which the timer underflows.
For instance, the closest NTSC AUDF value to play a 440Hz tone with the 64KHz clock is 72. This results in the
timer generating pulses at a rate of 1.79MHz =+ (73 x 28) = 875.6Hz. Two pulses are required to generate a
cycle, so the resulting square wave is half that at 437.8Hz. A similar divide-by-two is seen with the serial port,
which also requires two clock pulses per bit. However, the undivided rate is relevant for other uses of the timer,
such as IRQ generation and the noise sampling distortion modes.

Linked timers

Setting bit 4 of AUDCTL links timers 1 and 2 so that timer 2 is clocked using the output of timer 1, and similarly,
bit 3 links timers 3 and 4 together. This merges the pair of counters into a 16-bit counter, by making the following
changes:

« The automatic reload on underflow is suppressed on the low timer.

« The normal clock input to the high timer is replaced by the low timer output, so the high timer only counts
when the low timer underflows.

« When the high timer underflows, both the low and high timer counters are reloaded together.

Typically, linking is used with the 1.8MHz clock on the low timer to achieve a high-precision timer. However, it
can also be used with the 15KHz and 64KHz clocks. The high timer — timer 2 or 4 — is the one that has the
combined period and is the one that should be enabled for audio, IRQs, or serial port clocking.

For the 15KHz and 64KHz clocks, the period of the linked timer is (N+1)*114 or (N+1)*28, where N = AUDF1 +
AUDF2*256 or AUDF3 + AUDF4*256. When the 1.79MHz clock is used, the period is N+7 cycles. This is three
cycles greater than for an unlinked timer due to increased delay for the timers to reset, since low timer must
underflow before the high timer can underflow, and only then can both reset. As with unlinked timers, this delay
is effectively hidden when the 15/64KHz clocks are used.

Linking occurs prior to the audio circuitry and thus the waveform settings for the low channel have no effect on
the clocking of the high channel. Normally, the low audio channel is muted and only the high channel is used.
However, it can also be reused for volume-only effects or even enabled for special effects without affecting the
high channel.

Linked timer fire timing

While linked timers are intended to be used as a single high-precision timer, both channels are still active and in
particular the low channel still sends clocking pulses to the output circuitry. Because linking disables the normal
reload for the low channel, it first counts down and underflows from its initial period and then continues to count
down and underflow every 256 ticks after that until the high timer also underflows and resets both timers. For
instance, with a 16-bit period of $0140, the low timer will fire after counting down from $40, then again after
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another 256 ticks. The high timer in turn counts down from $01 to $00 after the first underflow and then to $FF
after the second underflow, after which both timers are quickly reset. The reset of both counters does not cause
the low timer to fire again. As a result, the low timer in a linked pair will fire AUDF2+1 or AUDF4+1 times for each
time the high timer fires.

The high timer underflows and fires three cycles after the low timer does at the end of each high timer cycle, with
a corresponding three cycle delay for changes to the audio output or interrupt status.

Distortion (waveform) selection

Bits 4-7 of AUDCx control the waveform used by the audio circuitry for a channel. This allows each channel to
produce a flat level (no output), a square wave, or a more complex wave driven by the polynomial noise
generators.

Bit 4 enables volume-only mode. When set, the waveform output is overridden and hardwired on at the output.
None of the other distortion bits affect the audio output in this mode, though they still do affect hidden state in the
audio circuitry, as the clocking and noise circuits still run but just don't have an effect on the audio output.

Bit 5 selects either noise (0) or a square wave (1). When the square wave is enabled, each time the timer
expires and the output circuitry is clocked, the output toggles, resulting in a square wave with a frequency half
that of the timer. When noise is enabled, bit 6 selects either the 9/17-bit generator (0) or the 4-bit generator (1).

Bit 7 controls the sampling mode. If it is set, the timer output directly clocks the output waveform. If it is cleared,
however, the 5-bit generator masks out some of the clock pulses, omitting pulses that would cause the output to
toggle or sample the 4/9/17-bit noise generators. This gives a rougher, uneven sound that is different than the
other generators.

AUDCXx[7:4] Output
0000 (0) Poly-5 clocked poly-9/17
0010 (2) Poly-5 clocked square
0110 (6) wave
0100 (4) Poly-5 clocked poly-4
1000 (8) Poly-9/17
1010 (10) Square wave
1110 (14)
1100 (12) Poly-4
Xxx1 Volume-only

Table 8: Distortion modes

The distortion mode setting has no effect on timer IRQs or serial port clocking, and the results of the distortion
setting are not observable by the 6502.

Noise sampling artifacts

In POKEY, all channels share a common set of psuedo-random noise generators that all run at machine clock
rate. Noise is generated for each channel by sampling the output of the generator at the channel’s rate, with a
long period (lower pitch) causing channels to skip more bits in the noise output between each sample. This
differs from the 2600’s TIA where each channel has a dedicated noise circuit generating bits at the channel rate.
POKEY’s sampling behavior can result in undesirable patterns due to interactions between the periods of the
noise generators and the channel timers. This happens when the two periods have a common factor.

For instance, the 4-bit generator has a period of N bits. An audio channel with a period of P cycles will sample
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the output of this generator every P cycles, or equivalently advance within the pattern every (P mod N) bits. If the
period is divisible by N, the same bit in the pattern will be sampled each time and no sound will occur. With the 4-
bit generator, N=15, and thus this occurs whenever the period is a multiple of 15 cycles.

For timer periods that aren't divisible by the noise period, artifacts will still occur if the two periods share a
common factor. This occurs because advancing by (P mod N) bits will only visit a subset of the bits. Given an
audio channel using the 64KHz clock and AUDFx=$CC, P=5740 and (P mod 15)=10, so it advances 10 bits at a
time. As a result, only three bits of the pattern will ever be used.

The three bits that are used, however, will depend upon the timing offset of the channel relative to the noise
pattern. This will tend to change whenever a sound is played, and the different sets of bits used will change the
timbre of the output. The 4-bit generator's 15 bit pattern is 000111011001010, so sampling it every 10 bits gives
the following possibilities: 001, 010, 001, 111, and 100. Four of these are similar, but one of them is a constant 1
bit -- giving a 1-in-5 chance that this configuration gives no sound.

Note that these interactions are based on the period in cycles, not ticks of the audio clock. When using the
15KHz or 64KHz audio clock, an AUDFx value of (F+1) divisible by N will produce silence, but other values can
as well. As an sample, using AUDFx=$48 gives a period of 73 audio ticks, which is not divisible by the 9-bit
generator's period of 511 bits. However, when combined with the 64KHz clock, the period in cycles is 73*28 =
2044 cycles. Since 2044 = 511*4, the result is silent.

This problem can be avoided by using a period in cycles that is relatively prime to the period of the noise
generator, ensuring that all bits in the noise pattern are used and guaranteeing that the output is not constant.
Always using period values that result in the same (P mod N) value will also guarantee that the sampled pattern
is the same and avoid changing the timbre of the resulting sound. With the 1.8MHz clock, the period can also be
detuned slightly to always advance the noise pattern by one bit each period, mimicking the TIA's behavior.

Volume control

Bits 0-3 of AUDCXx control the volume level for a channel, from 0 (silent) to 15 (maximum volume). The volume
level only matters if the channel output is currently a 1; if it is a 0, then there will be no output from the channel
regardless of the volume level.

The output from each channel is biased, producing either zero or a negative voltage depending on the channel’s
volume level. Thus, increasing the volume also increases the average DC bias in the output, and changing the
volume can result in audible stepping noise. However, if the channel’s digital output is 0, there will be no
difference in the analog output regardless of volume level.

The 4-bit DAC for each channel also has somewhat mismatched outputs for each bit. In particular, the ratios
between the drivers for the lower two volume bits don’t quite match the ratios for the higher two bits, resulting the
gaps between volume levels 3 and 4, 7 and 8, and 11 and 12 being a bit wider than expected.

In addition, the mixed output from all four channels starts to show non-linear saturation effects at higher total
volume levels. The output is nearly linear within the range of a single channel, where the volume sum of
channels with an active output is 15 or less. However, the remainder of the range 16-60 is only about double the
amplitude, and two channels actively outputting at volume 15 only achieve about 50% higher amplitude than a
single channel. This has the effect of compressing the output, amplifying quieter sounds and attenuating louder
ones. Also, because of the previously mentioned biased output from each channel, a channel that is producing a
constant 1 bit at non-zero volume can distort the output by shifting the audio output into the saturation range. A
channel with constant output 0, however, contributes no distortion regardless of its volume level.

Volume-only mode

Bit 4 of AUDC1-4 activates volume-only mode for a channel. This causes the channel output to be forced to a 1,
ignoring the output of the timer, noise generators, and high-pass logic, and only producing sound based on the
volume set by bits 0-3 of AUDCXx. This is often used for playback of digital sound effects at 4-bit/sample
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precision.

Note that because the volume-only mode is enforced after the high-pass logic, the normal inversion of channels
1 and 2 relative to 3 and 4 doesn't apply to this mode; volume-only channels will add in any combination.

Volume-only mode overrides the output of but does not disable the high-pass or noise flip-flops, which will
continue to sample the noise patterns and high-pass sources.

High-pass filter

Channels 1 and 2 have a high-pass filter which is enabled by bits 2 and 1 of AUDCTL, respectively. This uses
channel 3 or 4 to clock a high-pass flip-flop that captures the output of the lower channel and XORs against it,
canceling the output back to a 0 whenever the higher channel ticks. This zeroes part of the lower channel's
output, acting as a crude high-pass filter.

The high-pass signal path routes from the clock output of the high channel’'s countdown timer to an XOR
immediately before the volume-only override and DAC on the low channel. Thus, the high-pass effect will stack
with any noise and volume settings on the low-channel, but is overridden by volume-only mode. None of the
AUDC3/4 bits on the high channel affect high-pass operation. They will still affect the high channel’'s audio
output, which is usually set to volume 0 to mute it when using ch3/4 to drive the high-pass filter.

When the high-pass filter is disabled, the high-pass flip-flop is forced to a 1, but the XOR still takes place. This
causes the digital output from channels 1 and 2 to be inverted. Normally this isn't noticeable, but it can show up
when two channels play synchronized sound. If channels 1 and 2 are set to the same frequency and to pure tone
mode, they will add, but if the same is done with channels 1 and 3, they will cancel. This doesn't happen in
volume-only mode, however, as the gates that force volume-only mode are after the high-pass circuitry and
therefore volume-only channels always add in any combination.

The high-pass update path has about 1.5 cycles of delay from the high channel’s clock to the low channel’s XOR
output. If channels 1 and 3 have their timers synchronized to a period of P cycles and channel 3 is running two
cycles ahead of channel 1, a half cycle pulse will be produced per period. The half-cycle offset makes it
impossible for the high-pass filter to completely cancel the lower channel's output.

Despite its name, the high-pass circuit does not behave like a conventional high-pass filter and has a complex
effect on the output frequency spectrum. Similarly to adding sine waves, the high-pass output often has strong
components at the sum and difference of the two channel frequencies. With square wave output on the low
channel, this results in a varied duty cycle at double the frequency when the channel frequencies are the same,
or a pulse width approximation to a sawtooth when they are slightly different.

For instance, with channels 1 and 3 at 1.79MHz (NTSC) with AUDF1=$3B and AUDF3=$3C, the frequencies of
the timers are 1.78977MHz + (59 + 4) = 28409.1Hz and 1.78977MHz + (60 + 4) = 27965.2Hz. The result is a
sawtooth at 28409.1Hz - 27965.2Hz = 443.9Hz and an inaudible carrier at 28409.1Hz + 27965.2Hz = 56.4KHz.

Resetting the timers

Writing to the STIMER register causes all of the timers to reload and sets the output flip-flops to 1. When high-
pass filters are disabled, this turns off the output of channels 1 and 2 and turns on the output of channels 3 and
4. This is useful to synchronize the sound channels.

Resetting timers with STIMER does not fire the timers. No IRQs are asserted, and no clock pulses are sent to
the audio circuits.

STIMER has no effect on the phase offset of the 15KHz and 64KHz clocks, which can only be reset through
initialization mode. Regardless of when STIMER is strobed, any timers that are using those clocks will still only
decrement and underflow according to the timing of those clocks, and if such a timer hasn't decremented since
the last time it was reset, there will be no effect on that timer. This can be exploited by using STIMER to reset
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1.79MHz clocked timers without affecting the slowly clocked ones.
STIMER preemption

If STIMER is written soon enough before when a timer would fire, the timer counter is reloaded before it can
underflow and the related actions are preempted. This can include sending a clock pulse to the audio circuit,
updating the serial port, or triggering an IRQ. Due to pipeline delays, this must be done at least a couple of
cycles ahead of the timer underflow.

The last cycle that STIMER can be written to preempt the next underflow action is four cycles before the timer
IRQ would be asserted in IRQST. For 8-bit timer 1 at 1.8MHz with AUDF1=0 started with an STIMER write at
T+0, STIMER must be written again at T+4 to block the timer 1 IRQ being asserted in IRQST at T+8.

The extra two cycle period adjustment from two-tone mode does not affect this timing, because that is from an
extra counter reload that occurs after the initial underflow.

Reload timing

In general, the counter for a timer is only reloaded at the start of each period. Any changes to the timer’s
corresponding AUDF register only take effect at the next reload. For the first period after a write to STIMER, this
reload occurs three cycles after a write to STIMER. This means that the last time the AUDF register can be
updated to take effect for the first period is two cycles after the STIMER write. However, this is only possible with
an accelerator as the 6502 can't write to both STIMER and AUDF that quickly.

Afterward, the next reload occurs a full period after the previous reload for an 8-bit timer. For instance, given an
8-bit timer at 1.8MHz with AUDF1=0, if the STIMER write is at cycle T+0, the first reload will be at T+3 and the
second reload at T+7, making the deadlines to update T+2 and T+6. With AUDF1=5, the reloads are at T+3 and
T+12 with deadlines T+2 and T+11. These reload times are also one cycle before the timer IRQ is signaled in
IRQST, if enabled.

In linked (16-bit) mode, the timing for the low timer is changed due to the combined timer reload. The IRQ and
STIMER preemption timing are similar to the 8-bit case, but the reload of the low timer is delayed by 3 cycles to
match the high timer, and this also pushes out the deadline for writing AUDF1/3 by 3 cycles. For instance, with
AUDF1=0 and AUDF2=0, the second reload for both timers is at T+9.

Two-tone mode also changes the reload timing deadlines because of the extra resync reload that occurs two
cycles after the regular reload. Similarly to the linked case, the IRQ/preemption timing is the same, but the
second reload overrides the first and pushes the reload times out by two cycles. This means that for timer 1 in 8-
bit two tone mode with AUDF1=0, the reload times are T+3 and T+9 instead of T+3 and T+7. This can be
delayed by one more cycle in the double-resync case where the timer 1 and timer 2 periods are one cycle part,
causing both timers to resync each other and extending both the reload timing and effective period by 3 cycles.
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Phase

Cycle

Write to STIMER

8-bit loop 1 (AUDF1=0)

8-bit loop 2 (AUDF1=0)

8-bit loop 3 (AUDF1=0)

16-bit timer 1 loop 1 (AUDF1/2=0)

16-bit timer 1 loop 2 (AUDF1/2=0)

16-bit timer 1 loop 3 (AUDF1/2=0)

16-bit timer 2 loop 1 (AUDF1/2=0)

16-bit timer 2 loop 2 (AUDF1/2=0)

16-bit timer 2 loop 3 (AUDF1/2=0)

8-bit loop 1 (AUDF1=0 two tone)

8-bit loop 2 (AUDF1=0 two tone)

8-bit loop 3 (AUDF1=0 two tone)

16-bit timer 1 loop 1 (AUDF1/2=0 two tone 0-bit)

16-bit timer 1 loop 2 (AUDF1/2=0 two tone 0-bit)

16-bit timer 2 loop 1 (AUDF1/2=0 two tone 0-bit)

16-bit timer 2 loop 2 (AUDF1/2=0 two tone 0-bit)

2

Figure 7: POKEY detailed timer timing

IRl \rite to STIMER (last cycle of STA)
Last cycle to write AUDF to affect next period
Last cycle to write STIMER to preempt timer
Last AUDF write and first IRQST bit 1 cycle

2

First cycle with IRQST bit 1 asserted (timer 1)

First cycle with IRQST bit 2 asserted (timer 2)

Earliest timing for 6502 IRQ ACK (common)

Earliest timing for 6502 IRQ ACK (1c machine variation)
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5.4 Clock generation

There are three clocks that can by used to drive the timer counters. The first is the machine clock, which runs at
1.79MHz for NTSC and 1.77MHz for PAL. However, this clock runs much too fast for audio. Thus, the machine
clock is divided by 28 and 114 within POKEY to provide additional 64KHz and 15KHz clocks with more useful
range for audio. Because these are based on the machine clock and the machine clock varies slightly between
NTSC and PAL machines, this means that the same divisor values in the AUDF1-4 registers produce slightly
different frequencies between NTSC/PAL machines as well.

Ideal Clock Rate
Clock |Divisor NTSC PAL
Machine| +1 |[1.78977MHz| 1.77345MHz
64KHz +28 63.920KHz | 63.337KHz
15KHz | +114 | 15.700KHz | 15.557KHz

Table 9: POKEY clock frequencies

Channels 1 and 3 can use the 1.8MHz machine clock independently, depending on bits 6 and 5 of AUDCTL
[D208]. Channels 2 and 4, however, can only use the 64KHz or 15KHz clocks unless linked to channels 1 or 3 in
16-bit mode. Additionally, all channels must exclusively use either the 64KHz or 15KHz clocks together, as there
is only one control bit to select between those two clocks, AUDCTL bit 0.

Both the 64KHz and 15KHz clocks are generated by polynomial counters internal to POKEY and have no
guaranteed phase relation to other clocks in the system. In particular, the 15.7KHz clock uses the same divisor
as ANTIC's horizontal scan counter and thus runs at the same rate, but there is no connection to synchronize the
two. Instead, its phase is determined by when initialization mode is ended. Thus, the 15KHz clock may tick at an
arbitrary offset in the scan line, but will remain locked to the same horizontal offset until initialization mode is re-
entered. This can be used in conjunction with timer IRQs for more flexible interrupt timing than DLlIs.

While the 64KHz clock is used exclusively for audio, the 15KHz clock is also used for keyboard and paddle
scanning.

5.5 Noise generators

POKEY contains three noise generators, all composed of XNOR-based maximal-length linear feedback shift
registers (LFSRs, or polynomial counters) that run at 1.8MHz. These are used both for generating audio noise as
well as random numbers for the CPU.

All noise generators are shared between all four audio channels, and once initialized, are constantly running at a
rate of 1 bit per machine cycle. On each cycle, a bit is shifted out the end for use and a new bit shifted in from
the other end, computed as the XNOR of the end bit and one of the middle bits.

As maximal-length generators, each N-bit generator has a period of 2" — 1, so the 4-bit generator repeats every
15 bits, and the 9 bit generator every 511 bits. This also means the generator patterns are slightly biased with
one more 0 bit than 1 bit. When exiting initialization mode, all generators start zeroed.

4-bit and 5-bit noise generators

The 4- and 5-bit generators within POKEY are linear feedback shift registers with the polynomials 1+x3+x* and
1+x3+x®, respectively. They are only used for noise output and are not accessible to the CPU.
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The 4-bit generator has the pattern: 000011101100101.
The 5-bit generator has the pattern: 0000011100100010101111011010011.

9/17-bit noise generator

POKEY also has a third shift register which is either 9 or 17 bits long, depending on bit 7 of AUDCTL. When in 9-
bit (short) mode, the polynomial is 1+x*+x% when in 17-bit (long) mode, an additional eight bits are added to the
shift register and the polynomial is 1+x*2+x". Eight bits of the shift register are visible to the CPU via RANDOM
[D20A]; this is most commonly used for random numbers, but it can also be used to test cycle counting
hypotheses. RANDOM shifts right at the rate of one bit per machine cycle. Note that RANDOM reads bits
inverted from the shift register itself and the bits seen by the audio circuits.

If the main LFSR is in 9-bit mode and samples are taken from RANDOM ($D20A) every scan line by STA
WSYNC + LDA RANDOM, part of the sequence is as follows: 00 DF EE 16 B9.

Audio channel noise delays

The outputs of the noise generators are delayed to each audio channel by one clock apart to prevent the
channels from receiving the exact same noise. A given pattern bit arrives at channels 1, 2, 3, and then 4, in that
order.

For the 9/17-bit generator, the audio channels receive noise from the right end of RANDOM. This means that all
noise bits are visible to the CPU before they reach the audio circuitry.

Linked channels sample the noise generators from whichever channels are generating audio. Normally only the
higher channel has nonzero volume, so its timing determines the noise produced. If the lower channel is enabled
to produce sound, its noise output will be determined by that channel's timing, one cycle away from the higher
channel.

Initialization behavior

The polynomial counters must be reset on startup in case they power up in a lock-up state, of which there is
always exactly one state: either all 1s or 0s, depending on the implementation of the counter. Initialization mode
forces bits into the register until it is reset to the opposite of the lock-up state so that it is guaranteed to count
normally when the initialization state ends. Initialization mode need not be asserted for a long period of time for
the polynomial counters to work, as a single bit of the right polarity is enough to prevent lock-up.

Shortly after entering initialization mode, the audio circuits see a constant 0 from the 4-bit and 9/17-bit
generators, while the 5-bit generator is a constant 1.

When exiting initialization mode, the polynomial counters begin counting immediately. For instance, if 9-bit mode
is selected, executing STA SKCTL + LDA RANDOM back-to-back will give A=$1F, which is four bits after the all
ones state.

When initialization mode is re-entered, 1s are shifted into RANDOM from the left side. Beginning with nine cycles
after SKCTL is written to first enter init mode, RANDOM will always read $FF. Another nine cycles are needed for
the rest of the shift register to clear; it will work fine if restarted earlier, but not all of the bits will have been reset.

5.6 Serial port

The serial port is used to transfer data to and from the SIO bus. This allows for communication with disk drives,
printers, cassette tape recorders, and other SIO-supporting peripherals. Two serial shift registers are used, one
for input and one for output, and shared timers are used to clock the shift registers.
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Input shift register

Serial reception involves a 10-bit shift register and an 8-bit SERIN data register. When the serial input line is
pulled low for the start bit, the input shift register begins shifting until it has received a total of ten bits: the start
bit, eight data bits in order from LSB to MSB, and the stop bit. The eight data bits are copied into the SERIN
register and the serial input ready IRQ (IRQEN/IRQST bit 5) is asserted if enabled to indicate that a byte is
available. The shift register can then begin immediately receiving a new byte while the CPU reads the last byte
from SERIN.

The SERIN register always contains the last input byte received, whether or not it had errors. Reading the
SERIN register has no side effects; it does not acknowledge reception of a byte and it can be read multiple times
before the next byte arrives. Only one byte can be queued in SERIN, as the next byte will be copied into it as
soon as it completes even if no further bytes arrive and the shift register goes idle.

SKSTAT bit 1 indicates when the serial input shift register is active. It switches to 0 when the start bit is sampled
and back to 1 when the stop bit is sampled. This means that when receiving back-to-back bytes, this bit is low
90% of the time (9 bit cells out of 10); it does not stay low continuously.

Output shift register

Serial transmission involves another 10-bit shift register and 8-bit SEROUT data register. These are independent
from the input shift register and both can act independently for full-duplex mode. Writing to the SEROUT register
sets a bit indicating that a byte has been queued, after which it is copied into the shift register for serial
transmission. After that happens, SEROUT can be loaded again with another byte. This allows one byte to
gueued so that bytes can be sent back-to-back even if small delays occur in loading SEROUT.

Only one byte can be loaded into SEROUT at a time. If a second byte is written before the first can be loaded
into the shift register, the second byte replaces the first and only the second byte is sent.

The serial output ready IRQ (IRQEN/ST bit 4) is asserted when a load occurs from SEROUT to the ouput shift
register and thus SEROUT is ready for another byte. This only occurs if a byte is pending in SEROUT, and thus
the serial output must be primed by writing the first byte to SEROUT without waiting for the output ready
interrupt. Continuous transmission is assured as long as SEROUT is reloaded before the previous byte finishes
shifting out. The serial output ready IRQ is not asserted when shifting completes if no new byte is ready to load.

The serial output complete IRQ (IRQEN/ST bit 3) is asserted whenever the output shift register is idle. Unlike
other POKEY IRQs, it is not latched — it will stay asserted even if it is disabled in IRQEN and will automatically
deassert when shifting begins. This IRQ will stay inactive continuously while sending back-to-back bytes. One
use for the output complete IRQ is to determine when shifting has completed so the serial hardware can be
reconfigured. Another is to send with two stop bits instead of one stop bit, by using the output complete IRQ in
place of the output ready IRQ.
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Warning

The output shift register only attempts to load once every bit cell time on the rising edge of the serial clock
and thus there is a delay from the first write to SEROUT until the serial output ready/complete IRQs
update and SEROUT is ready for a second byte. Attempting to write SEROUT twice without a wait for
serial output ready in between can fail when the second byte replaces the first before it can be loaded into
the shift register.

This also means that it is necessary to wait for serial output ready before checking serial output complete
to end a transmission. Otherwise, if there is a delay in queuing bytes and the serial output shift register
temporarily idles, it is possible for the serial output complete IRQ to fire after SEROUT has been reloaded,
in the short time until the output shift register restarts on the next bit cell.

Framing errors

SKSTAT bit 7 reports if a framing error occurs on the serial input port. A framing error occurs when shifting is
started by detection of a 0 start bit, but the tenth bit that should be the stop bit is not a 1, indicating that the byte
was not received correctly.

Framing errors do not affect the shift/load processes. The errant byte is still loaded into SERIN and a receive
IRQ is still asserted, despite the error.

Overrun errors

SKSTAT bit 5 indicates whether an overrun has occurred.* An overrun occurs when a serial byte is not read
before the next byte is received; when this occurs, the new byte replaces the previous byte in SERIN and the
previous byte is lost.

The overrun bit is set specifically when a new byte is received and the serial port logic attempts to assert the
serial input interrupt when it is already active (IRQST bit 5 set to 0). This means that in order to acknowledge
receipt of a byte from SERIN, the serial input interrupt (IRQST bit 5) must be reset. The interrupt should also be
cleared before the start of a receive operation to clear any previously received stray data. Overruns are not
detected if this interrupt is disabled.

Reading a data byte from SERIN by itself has no bearing on whether an overrun is detected, only the interrupt
status.

The overrun bit in SKSTAT is sticky. Once an overrun occurs, it will remain set until the next write to SKRES,
even if subsequent bytes are received without an overrun.

Warning

The design of the serial port makes it impossible to completely reliably detect overrun errors since the
serial input ready IRQ must be temporarily disabled to acknowledge it, during which time an overrun can
be missed, and because there is necessarily a delay between the IRQ being acknowledged and the byte
being read from SERIN.

There is no overrun detection for output. Writing SEROUT again when a byte is already pending simply replaces
the previously queued byte with the new byte. Only one byte can be queued behind the one that is actively being
shifted out.

[21] Credit to HiassofT for noting that the SKSTAT reference on [ATA82] 111.18 has D5 and D6 swapped.
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Polled operation

It is possible to drive the serial port in polled mode by enabling serial interrupts on POKEY, disabling interrupts
on the CPU, and then polling IRQST. This can be useful if the data rate is too high to use interrupts. The interrupt
must both be enabled and masked since the interrupt status bit is required to detect the reception of a new data
byte.

Direct input

Bit 4 of SKSTAT directly reads the raw state of the serial input line. This bypasses all of the shifting and clocking
logic and ignores all serial input settings, working even if all clocks are stopped. This is used by the kernel to
measure baud rate prior to reading a block from cassette tape, since the serial input shift register cannot be used
until the baud rate has been set.

Clock selection

Bits 4-6 of SKCTL control the clocks used during serial port operation. These three bits affect a number of
switches and gates and interact in complex manners. For instance, bit 4 generally enables asynchronous receive
using timer 4, but it also sometimes changes the output clock as well. Each setting specifies a different
combination of signals to use for both the input and output clocks, as well as whether to configure the
bidirectional clock line as an input or an output. Here are all of the modes:*

Setting Input clock Output clock | Bidirectional clock | SIO clock in signal
000 External clock External clock Input

001 Channel 3+4 (async)| External clock Input

010 Channel 4 Channel 4 Output channel 4

011 Channel 3+4 (async) | Channel 4 (async) Input

100 External clock Channel 4 Input

101 Channel 3+4 (async) | Channel 4 (async) Input

110 Channel 4% Channel 2 Output channel 4

111 Channel 3+4 (async) Channel 2 Input

Table 10: Serial port timing modes

The modes for standard half-duplex SIO operation are 001 for reception and 010 for transmission. The output
clock and bidirectional clock signals are also connected to the SIO clock out and SIO clock in pins, respectively.
The clock signals are not normally used; for instance, the 810 disk drive ignores the clock lines and uses timing
loops for both transmission and reception.

Serial port clocks are produced by divide-by-two flip flops driven off of the counter outputs. They are not affected
by any of the audio control bits in the AUDC1-4 registers. However, the clock select and linking bits in AUDCTL —
bit 0 and bits 3-6 — do affect serial port operation since they affect the countdown timers themselves.

When using timer channels to clock the serial port, the timer frequency should be set to twice the baud rate.*

[22] [ATA82] 11.27 has the official mode chart; see also unnumbered page with serial/audio diagram for exact switch and gate layout.

[23] [ATA82] 11.27 and [AHS03] p.21 appear to have the same error of showing channel 2 as the input clock for the 110 setting. This is not
possible, as only channel 4 or the bidirectional clock line can be routed to the serial input shift register. The description text correctly
indicates channel 4.

[24] [ATA82] 11.25. The output clock toggles level each time the timer expires, so the frequency of the clock is half the frequency of the
timer.
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Channels 3+4 should also be linked together and driven by the 1.79MHz clock for highest precision. For cassette
operation at 600 baud, the divisor setting is $05CC; for disk operation at 19200 baud, it is $0028. Remember
that there is a six cycle delay in reloading a 16-bit, 1.79MHz timer. Due to imprecision in the timer divisor at high
frequencies, the actual transmission rate for the SIO bus is 19040 baud.
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Figure 8: SIO send/receive clocking signals

Upper picture: SIO data out (cyan) with SIO clock out (yellow) while transmitting $4F at 19200 baud with
SKCTL=$23.

Lower picture: SIO data in (cyan) with SIO clock out (yellow) while receiving $43 at 19200 baud with
SKCTL=$33 (asynchronous).

Chapter 5 - POKEY 112



Altirra Hardware Reference Manual Created by Avery Lee

The fastest that the serial port can run using internal clocking is 128 kilobaud, since the only way that the
1.79MHz clock can be connected to the serial port is through linked timers, which divides the clock by 7 to
256KHz, which is then divided by two in the serial port logic to 128 kilobits/sec.

Serial port reset

Setting bits 4-6 of SKCTL to %000, thus selecting an external clock for both input and output, also resets the
serial input and output clock flip-flops to a known state. The serial output updates on the next output clock cycle,
whereas the serial input updates after the next two input clock cycles.

This does not reset the serial input and output state machines, however. Initialization mode is required to do this,
by setting bits 0-1 of SKCTL to 0. This interrupts any bytes currently being shifted in the input or output shift
registers and flushes any byte that was queued for output in the SEROUT register. Finally, clearing bit 3 is
needed to reset the output state of the toggle flip-flop used by two-tone mode. Thus, the serial port is fully reset
by writing $00 to SKCTL.

One aspect of the serial point that is not reset by either means, however, is the bit currently being output on the
SIO DATA OUT signal of the SIO bus. While initialization mode does reset the serial output state machine and
stop the serial output shift register, it does not actually clear the shift register, leaving it outputting the last bit
shifted out. Thus, interrupting a send can result in the SIO DATA OUT line being stuck in the low state, which can
cause devices on the SIO bus to eternally attempt to shift in data bytes. This is not ordinarily a problem, as the
command line is deasserted so that devices won't attempt to read in command frames, but it can be an issue if a
device is listening for non-command data or when attempting to select timer 1 in two-tone mode.

Timer usage during serial port operation

The serial port and audio circuitry both share the countdown timers and thus timers used for controlling the serial
port are not available for audio generation. Usually channels 3 and 4 are used for clock generation; when using
two-tone mode for recording to cassette, channels 1 and 2 are also occupied for FSK output.

Note that while the serial port uses the output of the counters, the audio circuitry is still active. This means that
the occupied channels should normally be silenced by setting their volume to zero and the corresponding
interrupt enables in IRQEN should also be disabled. However, the audio channels can be enabled for effect. The
SIO library in the kernel ROM normally enables audio from channel 4 during transfers, producing the
characteristic beep-beep-beep of Atari disk loads.

Asynchronous receive mode

Setting bit 4 of SKCTL [$D20F] enables asynchronous receive mode. In this mode, timers 3 and 4 are held in
reset state while POKEY is waiting for a start bit, allowing the timers to run only once a start bit is detected. This
aligns timers 3+4 to the leading edge of the byte that the serial port input logic samples roughly in the center of
each bit. Without this, the serial port input is hot synchronized with the device on the other end and can sample
between bits, producing errors. In most cases, and particularly with disk drives, serial input is not reliable without
asynchronous mode.

Asynchronous receive mode also has the side effect of producing a characteristic audio tone when the sound
output is enabled on timers 3 or 4. This occurs because the audio circuit receives an odd number of pulses for
each byte (19), which in pure tone mode causes the audio channel to toggle once per byte. At 19200 baud, this
produces approximately a 960Hz tone during the read of each disk sector. The exact pitch produced varies
depending on the delay introduced by the device between bytes. This tone does not occur during transmission to
the device as that is done in synchronous mode, where the timer(s) used for the output clock run continuously.

Since asynchronous mode holds timers 3 and 4 in reset while waiting for a start bit, those timers are stopped
entirely when no data is being received. This means that leaving async mode enabled effectively disables
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channels 3+4 for all audio except volume-only mode. Therefore, bit 4 of SKCTL should be cleared before
attempting to use those channels for audio.®

Shift timing

As stated earlier, the serial port logic shifts bits in or out at half the rate of the controlling timer, with the input and
output shift registers use alternating phases of the clock if they share the same timer. When asynchronous
receive mode is enabled, it presets the clock at the beginning of the start bit so that the input shift register shifts
in the start bit one period (half bit) later, sampling the middle of the start bit. Setting SKCTL bits 4-6 to %000
resets the clocks to the opposite phase.

The serial port shift registers are also only loaded or unloaded on this clock, which means that the interrupt bit
latches are only activated on clock edges. This leads to unintuitive behavior when SEROUT is loaded for the first
byte of an output stream, as the serial output shift register is only loaded at the next clock edge.

First, SEROUT cannot be written twice back-to-back at the start because of the delay. It is necessary to wait for
the serial output ready IRQ (bit 4), which indicates when the contents of SEROUT have been moved to the
output shift register. This can take up to an entire bit cell time. If SEROUT is written again before this happens,
the second byte overwrites the first and only the second byte is transmitted instead.

Second, if the output shift register is initially idle, the serial output complete IRQ (bit 3) will not deassert until the
load occurs, as it only does so after the shift register loads from SEROUT and begins shifting. This means that
the complete IRQ should not be enabled or polled until the output register is known to be shifting, or else a
transmit routine may fail to wait for the last byte to complete and truncate the transmission.

[25] [ATA82] 11.26 states a slightly different rule, that the start bit resets channels 3+4. This must be interpreted as waiting for the start bit
and not the actual reception of the start bit in order to explain why those channels become silent when asynchronous mode is enabled
even when no serial data is being received.
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Figure 9: POKEY asynchronous serial receive timing

Figure 9 shows the timing relationships for asynchronous receive timing. Timers 3+4 are held frozen until
POKEY detects the leading edge of the start bit, upon which the timers are started. Every timer 4 period is a half-
bit, so sampling begins one period later and every two periods after that. 19 timer periods or 9% hits later, the
stop bit is sampled, SERIN is updated with the new data byte, the serial input ready IRQ is asserted, the overrun
and framing error bits in SKSTAT are updated, and timers 3+4 are stopped. SKSTAT bit 1, which indicates
whether the serial input shifter is busy, asserts halfway into the start bit and deasserts halfway into the stop bit.
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Figure 10: POKEY synchronous serial receive/transmit timing

Figure 10 shows the timing for synchronous reception and transmission. Reception is the same as for asynchronous mode, except that the shift timing is
determined by falling edges of the clock alone without the clock being restarted by the leading edge of the start bit. For transmission, each write to
SEROUT immediately loads the SEROUT register, but the shift register is only loaded on the next rising edge of the clock. Once this happens, the serial
complete IRQ is deasserted and the serial output ready IRQ is asserted, if enabled. SEROUT can then be reloaded with the next byte at any time before
the first byte finishes sending. The serial output register is automatically reloaded with the second byte from SEROUT, and after it completes and no more
bytes are queued, the serial output complete IRQ is reasserted. The serial output ready IRQ is not asserted a third time.
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Two-tone mode

Two-tone mode is used for frequency shift keying (FSK) encoding of serial output, replacing low and high signal
levels with two different tones instead. This mode is enabled in POKEY by setting bit 3 of SKCTL. When
enabled, the serial output port instead outputs square waves clocked by timers 1 and 2, where timer 1 is used for
a 1 bit and timer 2 is used for a 0 bit. This is used most often for writing to cassette tape with the 64KHz clock,
with AUDF1=3$05 (5327Hz) for 1 bits and AUDF2=$07 (3995Hz) for O bits.

The switching between timers 1 and 2 is done in the serial logic and only affects the clock used there; it does not
affect the audio circuitry, which will still react to timer 1 and 2 pulses without regard to the data bits being output
by the serial port. Thus, the AUDC1 and AUDC2 registers do not affect the serial output and do not need to be
set to pure tone mode; they are instead normally shut off at volume 0. The serial output port has its own divide-
by-two to generate the tones that is also independent from the audio circutry. It is not reset by STIMER, though it
is reset to 0 when two-tone mode is disabled.

Two-tone mode has no effect on serial input. Unlike tape write operations, where POKEY must be configured to
encode to FSK on serial output, POKEY has no logic for FSK decoding on input. This is done by the cassette
tape deck instead, which outputs a conventional data stream for POKEY'’s serial input. Thus, two-tone mode is
not needed for and not typically enabled for tape reads.

Two-tone resync

Two-tone mode does still have some effect on audio output because it frequently resets timers 1 and 2 for
continuous phase in the FSK output. Specifically, whenever the serial output toggles due to one of the timers,
both timers are reset. The effect is that whenever the output data bit changes, the serial output seamlessly
switches from one tone to the other without glitches in the output from partial pulse widths. However, resyncing
the two timers this way can also alter the frequency or even mute the timers.

When a resync happens, both timers 1 and 2 have their counters reset to AUDF1 and AUDF2 values. As with
STIMER, this does not send pulses to the audio circuits. This means that if the faster timer is driving the resync,
it will continually interrupt the slower timer and prevent it from clocking its audio circuit. However, if the slower
timer is driving the resync, then the faster timer will still be able to clock its audio circuit one or more times before
being reset, although its frequency will be lowered to a multiple of the slower timer’s frequency.

There is an asymmetry in the data bit switching logic which imposes a frequency requirement on the timers.
Timer 1 pulses are only used by the serial output for a 1 bit, but timer 2 pulses are always used, causing a
resync and toggling the output regardless of the current data bit.?® This means that timer 2 must have a lower
frequency for two-tone mode to function as intended.? Otherwise, timer 2 will preempt timer 1 before it can fire
even when the current data bit is a 1, silencing the tone for 1 bits.

Two-tone resync timing

The timer 1+2 reset in two-tone mode occurs two cycles after the timer that triggered the resync reloads. This
doesn't matter in normal cassette write operation with the 64KHz clock, but it becomes important with timer 1
clocked at 1.79MHz.

The first effect of the delay is that if timer 1 at 1.79MHz drives the resync, it will have a period of two cycles
longer than usual, due to being re-reloaded two cycles after the normal reload. Note that this only affects the
second and subsequent periods after an STIMER reset, as there is no timer 1+2 resync at the start. Thus, a
normal timer 1 configuration that would fire 8, 12, and 16 cycles after STIMER would instead fire after 8, 14, and
20 cycles instead. This change in period doesn't occur when using the 15KHz/64KHz clock for timer 1+2, as the

[26] The audio and serial port block diagram in [ATA82] is incorrect; it should show ((chan 1 AND serial) OR chan2) instead of a switch
between chan 1 and chan 2 leading into the div-by-2 block in the two tones path.
[27] [ATA82]I1.26
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delay will be absorbed into the period to the next clock tick, which will fire 28 or 114 cycles later regardless.

The second effect is that the non-resyncing timer can fire up to one cycle later than the resyncing timer without
being preempted. For instance, if timer 2 is set to a period of 28*3 = 84 cycles, timer 1 can be set to up to 85
cycles and still fire. If timer 1 is set to 86 cycles, then it will be preempted and not assert an IRQ or fire an audio
tick.

The third effect is that it is possible for the two timers to mutually reset each other due to the delay. If both timers
fire on the same cycle, then there is only one resync that occurs. However, if one timer has a period one cycle
later than the other and both are enabled for resync (mark output), then each timer will trigger a resync of both
timers two cycles after their normal reload, with two resyncs occurring back-to-back. When timer 2 fires one
cycle after timer 1, this effectively adds three cycles to the next timer 1 period.

Two-tone force break mode

In two-tone mode, the force break bit (SKCTL bit 7) forces the output to the tone for a 0 bit, instead of actually
sending a constant 0 out the serial port. This is done by overriding the data bit input to the timer input switch so
that pulses from timer 2, the timer for 0 data bits, is used for the output tone and timer resync regardless of the
serial output data bit state.

This mode is sometimes useful when using two-tone mode for audio purposes instead of serial output, since it
forces use of timer 2 regardless of the state of the serial output shift register.

5.7 Interrupts

POKEY can issue interrupts to notify the CPU of events such as timer expiration and changes in serial port state.
All interrupts from POKEY are IRQs.

Interrupt enable/status

The IRQEN register selectively enables or disables interrupts; a 1 bit enables an interrupt. When an interrupt is
enabled and becomes active, the corresponding bit in IRQST is set to a 1 and the IRQ line to the 6502 CPU is
asserted. POKEY will keep the IRQ line asserted until all pending interrupts are cleared by resetting the
corresponding IRQEN bit; this ensures that the CPU will continue to execute its IRQ routine until all interrupts
are serviced, even if an NMI intervenes temporarily.

Note that the serial transmission complete interrupt (bit 3) is special — it is not latched, so it is simply active
whenever the serial output shift register is idle and automatically deasserts when a new byte begins to shift out.
The interrupt status bit and corresponding interrupt will be set in that case even if bit 3 of IRQEN is cleared. This
can be useful to assert an IRQ on the CPU on demand.

With the exception of bit 3, the status bit for a disabled interrupt is always locked to a 1. There is no interrupt
queuing for a disabled interrupt — any interrupts that would have triggered while an interrupt is disabled are lost.

Disabling all interrupt sources in IRQEN does not block all IRQs; POKEY shares the IRQ control line with the PIA
and the Parallel Bus Interface, which can also trigger IRQs on the CPU.

Interrupt timing

There is a minimum 2-3 unhalted cycle delay from the time that an interrupt is signaled in the IRQST register to
the first time that the 6502 will begin the seven cycle interrupt acknowledge sequence. This delay is extended if
the 6502 is in the middle of executing an instruction when the three cycles have elapsed or if ANTIC halts the
CPU for DMA.
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Machine-specific Behavior Warning

The IRQ delay can vary between systems or based on temperature. A 3 cycle delay appears to be more
common, but some systems can consistently show 2 cycles.®

Enablel/disable timing

A write to IRQEN that enables an interrupt must occur at least four cycles before the interrupt source activates,
or else the interrupt will not be latched in IRQST and an IRQ will not occur. For instance, if a timer is configured
such that the IRQ handler would trigger on cycle 16 of a scan line, the latest that the write to IRQEN can occur is
cycle 12.

For disabling an interrupt, the write to IRQEN must occur at least two cycles in advance. In other words, for an
IRQ on cycle 16, the write must occur on cycle 14 or earlier to block the interrupt in time. This means that there
is a one-cycle window where an IRQ can still occur after its source has been shut off via IRQEN.

Warning

The fact that a previously signaled IRQ can happen immediately after a write to IRQEN means that
caution must be taken when attempting to shut off POKEY interrupts. Simply attempting to write $00 to
IRQEN can fail if an IRQ occurs afterward and re-enables interrupts, leading to a rare crash. To be safe,
mask interrupts with an SEI instruction before clearing IRQEN; this ensures that the 6502 cannot service
the interrupt before noticing that the IRQ line has been negated.

It is also possible for the IRQ handler to be entered without an interrupt being signaled in IRQST by means of the
serial output complete IRQ. This can happen because the serial output complete IRQ deasserts automatically
once a new byte is loaded into the output shift register and there is a delay from when SEROUT is written to
when this occurs.

Initial interrupt state

Because POKEY has no reset pin, IRQEN state is indeterminate on start-up. IRQEN should be cleared before
the 6502 | flag is cleared.

5.8 Keyboard scan

The keyboard is automatically scanned by POKEY, which detects any pressed keys and notifies the CPU of new
key presses.

Key press detection

When a key is pressed, the key code is placed into bits 0-5 of the KBCODE [D209] register. The keyboard
interrupt (IRQST/EN bit 6) is also activated if it is enabled. At the same time, SKSTAT bit 2 is set to indicate that
a key is depressed and stays asserted as long as the key is held down, allowing software to implement key
repetition.

Whenever a key code is latched into KBCODE, bits 6 and 7 are also set to indicate the state of the Shift and
Control keys, respectively. These bits are updated at the same time as bit 0-5 and do not change if Shift or
Control changes state without another key press. However, SKSTAT bit 3 is updated whenever a change in the
Shift key is detected even if no other key is pressed.

[28] Credit goes to HiassofT for discovering this innovative method of measuring temperature with an Atari computer.
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If the same key is pressed multiple times in a row, KBCODE does not change. Therefore, the only way to detect
manually repeated key presses is through the keyboard IRQ or by polling SKSTAT. Key releases never change
KBCODE or interrupt status and can only be detected by polling.

Key codes

The key codes that appear in KBCODE are scan codes, which are different than ATASCII or INTERNAL codes
for characters. Tables 11 and 12 lists the base key codes returned for each key, before the Shift and Ctrl bits are
set.

+0/8 | +1/9 |+2/A|+3IB| +4IC | +5ID | +6IE | +7IF
$00 L J - F1 |F2 K +\ | *A
$08 | O P U Ret |1 - =
$10 |V Help |C F3 |F4 B X z
$18 4 % 3# |6& |Esc (5% (2" |1!
$20 |,[ |Space.] N M |/? |Invert
$28 | R E Y Tab | T W |Q
$30 | 9 ( 0) |7' |Bksp|8@ |< >
$38 | F H D Caps |G S A
Table 11: Key codes (scan matrix layout)
Help Start Select Option Reset
[11]
Esc |! " # $ % & ' @ ( ) Clr |Ins |Bksp |Break
[1C] |1[1F] 2[1E] |3[1A] |4 [18] 5[1D] |6[1B] |7 [33] |8 [35] |9[30] |0[32] |<[36] |>[37] |[34]
Tab Q W E R T Y ] I 0] P _ | Return
[2C] [2F] |[2E] |[2A] |[28] |[2D] |[2B] |[0B] |[0D] |[08] |[[0A] |-[OE] |=[OF] |[0C]
Control A S D F G H J K L : \ n Caps
[3F] |[[BE] |[3A] |[38] |[3D] |[39] |[01] |[05] [00] |;[02] |+[06] |*[07] |[3C]
Shift V4 X C \% B N M [ ] ? Shift Inv
[17] |[16] |[12] |[10] |[[15] |[23] |[25] |, [20] |.[22] |/ [26] [27]
Space
[21]

Table 12: Key codes (130XE keyboard layout)

The Start, Select, Option, and Reset keys do not have key codes associated with them as they are detected
differently; Shift and Control keys function as modifier keys.

Six key codes are not mapped to keys in the keyboard matrix and cannot be triggered in normal operation. The
function keys F1-F4 are also absent on all models except the 1200XL. However, the absent key codes can be
triggered on a stock keyboard if the keyboard debounce is disabled (SKCTL=$02). For instance, pressing
O+V+Help quickly with debounce disabled can latch $09 into KBCODE. This is also theoretically possible with
debounce enabled, but improbable due to the very tight timing requirements.
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Keyboard overruns

If a new key is pressed and detected while the keyboard IRQ is still active (IRQST bit 6), a keyboard overrun is
signaled by clearing SKSTAT bit 6, and the new key code replaces the old one in KBCODE. Reading KBCODE
has no effect on the IRQ or overrun state.

A keyboard overrun condition is cleared by writing to SKRES.
Scan timing

The keyboard scan is triggered by the 15KHz clock. This means that keyboard IRQs occur relative to when the
15KHz clock is initialized. This typically means that the keyboard IRQ never hits the magic cycle on a scan line
that can block NMIs, but just about every key can hit that cycle if POKEY is initialized at just the wrong offset.
This happens if initialization mode is cleared at around cycle 32 on a scan line. The timing will vary somewhat
due to variance in when the 6502 is able to acknowledge the interrupt.

Scan algorithm

The keyboard scanning hardware consists of a 6-bit counter, a 6-bit latched compare register, and a state
machine with four states. One key out of 64 total is checked per cycle at 15KHz, so a full scan takes 4ms. The
state hardware functions as follows?:

o State 0 (key up):
o If a key is down, latch the counter in the compare register and go to state 1.
e State 1 (debounce key down):
o If the counter matches the compare register, and the current key is not down, go to state 0.

o If the counter matches the compare register, and the current key is down, assert the keyboard IRQ,
clear bit 2 of SKSTAT, copy the counter value into KBCODE, and go to state 3.

o If the counter does not match the compare register, and the current key is down, go to state 0.
o State 3 (confirmed key down):

e If the counter matches the compare register, and the current key is not down, go to state 2.
e State 2 (debounce key up):

e If the counter matches the compare register, and the current key is not down, set bit 2 of SKSTAT
and go to state 0.

This flow assumes that keyboard debounce (SKCTL bit 0) is enabled. If debounce is disabled, then comparisons
against the compare register always pass.

SKSTAT bit 2, which indicates whether a key is held down, is updated based on the current state of the keyboard
state machine. It is only updated after a key up or down has been debounced, and asserts at the same time that
KBCODE is updated and the IRQ is triggered.

The design of the keyboard state machine limits the maximum normal (debounced) typing rate to approximately
60 characters per second, since key presses can only be registered once every four full keyboard scans (256
horizontal blanks).

[29] Flowchart versions of the keyboard state machine can also be found in [AHS03] and [AHS03a]. They do not, however, indicate the
connection to SKSTAT.
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Control/Shift/Break scan

The Control, Shift, and Break keys are detected in parallel with other keys during the scan. Control and Shift are
detected concurrently with scan codes $00 and $10, while Break is detected with $30. Control and Shift states
are captured into internal latches that are later fed into SKSTAT bit 3 and KBCODE bits 6 and 7; Break is used to
trigger the Break key IRQ. These keys are not affected by debounce, are not reflected in SKSTAT bit 2, and do
not trigger keyboard overruns.

Both Shift keys are wired identically and cannot be distinguished in software.

The Break key is monitored only for key down transitions. When a Break key press is detected, the Break key
IRQ (bit 7) is asserted if enabled. The IRQ will not retrigger while the key is held down and the key press is lost if
the IRQ is disabled when the key down occurs, as the IRQ will not retrigger when re-enabled even if Break is still
down. There is no direct way to determine if it is still depressed or when it is released.*

Keyboard scan enable

Bit 1 of SKCTL enables keyboard scanning. If it is disabled, the state machine is forced to state 0 and the
counter is held in reset state. This causes SKSTAT bit 2 to reset to 1. However, KBCODE and any previously
signaled keyboard IRQs are unaffected, and SKSTAT bit 3 retains its current state regardless of subsequent
movements of the Shift key.

The Break key cannot be detected while the keyboard scan is disabled.
Keyboard debounce

Bit 0 of SKCTL controls the debounce function. When enabled, a key must be detected as pressed in two
consecutive scan cycles before a key press is registered, and the key must be released for two consecutive scan
cycles before the key is considered released. This is intended to filter out noise from mechanical switches, which
produce noise output when pressed or released. Unfortunately, this function is poorly named and has several
side effects besides debouncing.

When enabled, the keyboard will never register a key press when two or more keys are pressed simultaneously.
This is because the keyboard scan logic does a second pass over the keyboard to verify a key press and rejects
it if another key is depressed at the same time. However, once a key press has been registered, any other keys

are ignored and the key will continue to be reported as depressed until it is released.

When disabled, the keyboard is basically non-functional, as the keyboard state machine checks consecutive
keys rather than the same key in consecutive cycles. In this mode, a key press will only register if two
consecutive keys are held down, and afterward will register it for only two additional scan lines before reporting a
release, even if the key is still held down. This pattern will also repeat every time the keyboard is scanned, so
holding down a pair of adjacent keys will cause the second key to be reported once every 64 scan lines (~240
times a second). These effects are typically undesirable and so debounce normally must be enabled for normal
keyboard operation.

Turning debounce off while a key is recognized as held down will cause a key up transition, as the keyboard
state machine will transition through key up as it scans unactivated keys and then fail to re-enter key down due
to failing to find two consecutive keys down.

Note that the 5200 keyboard is the opposite: it requires debounce to be disabled to function. See chapter 13 for
details.

Shift and Break key detection are not affected by the debounce function — they are reported via SKSTAT hit 3
and IRQST bit 7 in the same manner regardless.

[30] Itis possible to detect the Break state indirectly by phantom keys if specific other keys are depressed at the same time and debounce
is disabled, but this is a corner case useless in practice.
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Key conflicts

While the POKEY hardware views the keyboard as a linear set of 64 keys, it is actually physically arranged as a
2D matrix where the high three bits of the key scan code control the output lines and low three bits control the
input lines, and a key is detected when it connects an output line to an input line. Because there are no diodes
on the keys, pressing three or more keys on a rectangle in the matrix can result in an additional phantom key
appearing at the missing fourth corner of the rectangle. For instance, pressing L, J, and V will also result in the
Help key being detected.

Ordinarily, this isn't a problem because the debounce logic prevents any keys from being registered when more
than one non-madifier key is down, so adding a fourth key on top of three already pressed makes no difference.
If debounce is disabled, however, the phantom keys can be detected when new pairs of keys with adjacent scan
codes are activated. With L+J+V, for example, the L+J pair will result in KBCODE=%$01, followed by V + phantom
Help setting KBCODE=%$11.

Where this particularly causes a problem is when two or more of the Control, Shift, or Break keys are pressed in
conjunction with another key. These keys share a control line (KR2) and also share row lines with the regular
keyboard, with Control sharing with $00-07, Shift with $10-17, and Break with $30-37. This effectively extends
the 8x8 matrix to 8x9 and allows these keys to also participate in creating phantom keys. Pressing one of these
keys at the same time as a regular key is OK because two keys are not enough to cause a problem, but pressing
two of them in addition to a regular key will cause a phantom key to appear on the regular key matrix. The most
noticeable impact of this is that none of the Control+Shift+key combinations for scan codes $C0-C7 or $D0-D7
can be detected, due to the keyboard scan seeing two keys down in the regular matrix. Also, Control+V+L will
simulate Shift, and Control+L+9 will simulate Break.

Note that this problem is caused by the keyboard matrix hooked up to POKEY. On the 5200, the upper trigger is
fully independent from the keypad and cannot contribute to phantom keys.

Auto-repeat

There is no auto-repeat hardware in POKEY. Keyboard auto-repeat must be implemented in software.

5.9 Paddle scan

POKEY has inputs for eight potentiometer (“pot”) inputs, typically used to read paddles. Pulse timing is
automatically handled in hardware, relieving the CPU of the need to poll the inputs and simply requiring values to
be read after the polling has completed.

Polling mechanism

The pot inputs are designed to be connected to a capacitor charged up by a variable voltage, where the voltage
is determined by a pot-based divider in the paddle controller. The voltage from the controller determines the rate
at which the capacitor charges up, which in turn changes the time taken for the capacitor to charge up to
threshold voltage. POKEY measures how long this takes and reports this as the controller position. Afterward,
dumping transistors drain the capacitors and reset them for the next read.

The polling process is started by a write to the POTGO register. This resets the main counter, which begins
counting up from 0 once per scan line. The value of this counter is continuously latched into the each pot
position register (POTO0-7) until the corresponding input reaches threshold. The counter stops at 228, which is
latched into the registers for any pot inputs that have not yet reached threshold.

Normally, the polling counter is driven by the same clock that is used by the keyboard scan. Therefore, paddle
scanning is inoperative when initialization mode is active and the keyboard clock is frozen. The exception is
when fast pot scan mode is enabled, which selects the machine clock instead of the 15KHz clock.
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Polling status

The ALLPOT register can be used to check the state of each input. Each bit in ALLPOT corresponds to one of
the inputs and reads 1 while the input is being polled, then 0 when polling is complete. Therefore, the amount of
time that each bit is 0 is proportional to the count eventually read. ALLPOT is forced to $00 once the scan has
finished, regardless of the state of the inputs.

ALLPOT also indicates which POTn registers are being updated continuously from the master counter. If an
input somehow dips back below input threshold during the scan, the corresponding bit in ALLPOT will revert to 1
and the POTn register will resume updating from the main counter.

The POT counters can be read while the scan is occurring. The main counter is continuously copied into the
POTO-7 registers until each input reaches threshold, so all counters will count up in sync until then.

Fast pot scan mode

Setting bit 2 of SKCTL enables fast pot scan mode, which switches the counter from the 15.7KHz keyboard clock
to the 1.79MHz machine clock. The scan time is shortened to two scan lines, and the values latched into the
POTO-7 counters are proportional to clock cycles instead of scan lines. The counter stops one value higher in
this mode than in normal scan mode (229 vs. 228).

Fast pot scan mode cannot be used to scan regular paddles. Although it technically functions, it is practically
useless as the counts are 114 times higher, giving 0-229 at the extreme low end of the normal pot value range.
This is because the rate at which the paddles charge the input capacitors is far too slow for the faster scan rate.

A side effect of enabling fast pot scan mode is that it also disables the capacitor dump transistors. This means
that, by default, simply enabling fast pot scan mode will not work because the capacitors will never be drained
below threshold voltage after they have changed up, no matter how many times POTGO is strobed. Inputs that
have already reached input threshold at the start of the scan will not have their position registers updated at all.
The dump transistors are disabled as soon as fast pot scan mode is enabled, so attempting to enable fast pot
scan mode and then write POTGO can fail when the capacitors charge up past the threshold in between the two
writes. The dump transistors are on whenever slow pot scan mode is enabled and a scan is not occurring.

Reading live counters

Attempting to read the POTO-7 registers during the active pot scan can produce non-monotonic results if those
registers are still being updated. Specifically, the bits 0-4 of the count may be blended between cycles such that
LSBs reset to 0 before the carry has propagated through to upper bits. The effect is that instead of counting $00-
$10, the low bits count in the following sequence: $00, $10, $10, $12, $10, $14, $14, $16, $10, $18, $18, $1A,
$18, $1C, $1C, $1E, $10. As a result, fast pot scan mode cannot be used to reliably count cycles.

Note that while the live values during the scan are always even, odd values can be recorded as the final value
when the counters stop updating.

Truncated scans

A full paddle scan takes 228 scan lines or cycles, depending on the mode. The entire time is required regardless
of when the individual pot scan counters latch. If POTGO is retriggered before the previous scan finishes, the
dump transistors will not have had a chance to drain the capacitors before the next scan starts, resulting in
truncated counts. For instance, restarting the scan after 64 scan lines will result in counts 64 lower for any inputs
reaching threshold after the restart. Continuously restarting the scan can prevent the pot counters from updating
at all, because the dump transistors will never get a chance to activate. It takes about 20-40 cycles before the
capacitors are sufficiently drained to produce normal values.
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Reset

Other than the stopping of the slow pot scan clock, the pot scan logic is not affected by initialization mode. The
scan counter may need to count for up to a full 256 counts (not 228) to fully reset the pot scan logic.

Unconnected inputs

On the XL/XE computers and the XEGS, which only have two joystick ports, pot inputs 4-7 are hardwired to
ground and will always read 228 (normal scan mode) or 229 (fast scan mode).

5.10 Examples

Atari OS, up through XL/XE OS ver. 2

Most versions of the Atari OS have a race condition in the SIO first byte transmit routine where a byte is written
to SEROUT before the CHKSUM variable is initialized, while IRQs are unmasked. The serial input ready IRQ,
which fires one serial tick later, can strike in between the writes to SEROUT and CHKSUM, updating CHKSUM
with the second byte before it is initialized. The chances of this are greatly raised by the VBI being enabled,
which can also strike in between and then extend the window for the IRQ to ~130 cycles.

The result of this race is a blown checksum calculation. A disk drive will send back a NAK in response, but due to
another bug in SIO, the result is a long timeout delay before the command is retried. It was fixed in later versions
by swapping the order so that CHKSUM is written first.

Ray of Hope, Numen

Both of these demos use channels 3+4 in 16-bit mode at 1.79MHz with the 4-bit polynomial noise generator
selected. The channels are set to a high frequency and the demos rely on the pattern of the noise generator to
alias the frequency down to a lower range. The cycle period is therefore critical for the high notes to sound
correctly instead of squeaking.

SpartaDOS X

SDX uses its own SIO routines for disk access that use polling rather than interrupts, by disabling interrupts on
the CPU and waiting for bits in IRQST to change state.

5.11 Further reading

Read the Hardware Manual [ATA82] or the POKEY datasheet [AHSO03] for theory and register-level
specifications for POKEY. The Hardware Manual is especially useful here as it has detailed descriptions of the
serial port and audio paths that are undocumented elsewhere.
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6.1 System role

GTIA's primary role is to generate the composite video signal output, combining the playfield graphics produced
by ANTIC with player/missile graphics and converting it to a color signal. It also has ancillary roles in reading
joystick triggers, driving the console speaker, and sensing console buttons.

Addressing

GTIA's address range is $D000-DOFF, with the canonical range being $D000-D0O1F. Accesses to $D020-DOFF
are mirrored to the same registers.

Power-On Value*
Address| Read Write (Read)
$D000 | MOPF [HPOSPO $00
$D001 | M1PF |HPOSP1 $00
$D002 | M2PF |HPOSP2 $00
$D003 | M3PF |HPOSP3 $00
$D004 POPF |HPOSMO $00
$D005 P1PF |HPOSM1 $00
$D006 P2PF |HPOSM2 $00
$D007 P3PF |HPOSM3 $00
$D008 | MOPL | SIZEPO $OF
$D009 | MIPL | SIZEP1 $OF
$D00A | M2PL | SIZEP2 $OF
$D00B | M3PL | SIZEP3 $OF
$D00C | POPL SIZEM $OE
$D00D | P1PL |GRAFPO $0D
$DOOE P2PL |GRAFP1 $0B
$DOOF P3PL |GRAFP2 $07
$D010 | TRIGO |GRAFP3 $01
$D011 | TRIG1 | GRAFM $01
$D012 | TRIG2 |COLPMO $01
$D013 | TRIG3 |COLPM1 $01
$D014 PAL [COLPM2 $OF / $01
$D015 COLPM3 $OF
$D016 COLPFO $OF
$D017 COLPF1 $OF
$D018 COLPF2 $OF
$D019 COLPF3 $OF
$DO1A COLBK $OF
$D01B PRIOR $OF
$D01C VDELAY $OF
$D01D GRACTL $OF
$DO1E HITCLR $OF
$D01F |CONSOL|CONSOL $00

Table 13: GTIA Register Map

Power-on values are for a cold start after the computer has been powered off for 30 seconds. Shaded values are
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observed but not architecturally guaranteed, and may also be different on a non-cold start since they are not
affected by reset. Thus, GTIA registers must be cleared on startup to ensure consistent state.

All data bus bits are driven by GTIA in its address range and there are no floating data bits on read.

Note
VBXE checks for writes to $D080-DOFF to detect a GTIA reset.

Variants

There are three variants of GTIA: the original NTSC version, a version updated for PAL, and a rare third version
called FGTIA for SECAM. Aside from the generated video output, the three versions function almost identically
from a programming perspective, with the differences between NTSC and PAL being in the PAL detection
register.

The FGTIA has slightly more differences in behavior due to some changes to accommodate reassignment of
chip package pins: the trigger inputs are serially latched at the start of horizontal blank, and luminance bit 0 is
missing in mode 9. However, not all SECAM systems use the FGTIA, as some use the PAL GTIA instead.

NTSCI/PAL detection
The PAL register is not actually present in the original NTSC GTIA, with the value returned from unassigned
addresses later retroactively defined as the NTSC/PAL detection register at $D014. Only bits 1-3 are defined in

the register specification, but in practice all bits are stable. NTSC versions return $0F and PAL/SECAM versions
return $01.

6.2 Display generation

Position coordinates

Horizontal and vertical positions of graphics generated by GTIA can be described in 8-bit coordinates. Numerical
positions are used directly with player/missile graphics and can also be mapped to playfield graphics.

For horizontal positions, the full scanline consists of 228 color clocks. Player/missile graphics are positioned from
the left edge of the player or missile, and a position of $80 aligns the left edge of the player/missile with the
center of the screen. Accordingly, $7F is one color clock to the left, and $81 is one color clock to the right. These
values are directly written into horizontal position registers in GTIA. P/M graphics are visible in the range of $22-
DD (188 color clocks), with $DE positioning an object just barely off screen. A narrow-width playfield is visible at
$40-BF, a normal-width playfield $30-CF, and a wide playfield $2C-DF ($20-DD clipped on the left side).

Vertical positions are by scanline, with the maximum range being 8-247 (240 visible scanlines), and the center at
128. By convention, the standard normal-width Gr.0 screen covers 32-223 (192 visible scanlines). GTIA does not
use vertical positions, but ANTIC does so when fetching P/M graphics for GTIA.

Blanking and sync regions

Horizontal/vertical blanking and sync are generated by through coordination between ANTIC and GTIA.

Horizontal blank timing is determined and signaled to GTIA by ANTIC through the ANx bus. GTIA maintains its
own horizontal counter in parallel to ANTIC, which is resynchronized when horizontal blank starts and then used
to trigger horizontal sync and color burst for the next line. Graphics processing is suppressed until ANTIC signals
end of horizontal blank.
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ANTIC does not explicitly signal vertical blank to GTIA and instead simply holds horizontal blank active during
vertical blank regions. GTIA's internal horizontal blank counter free-runs during this time to continue triggering
horizontal sync pulses every 114 cycles. This also causes GTIA to continue emitting color burst in vertical blank,
which is not normally present in broadcast signals. There are also no equalization pulses.

Vertical sync timing is explicitly signaled by ANTIC through a special ANx bus code, during lines 251-253 for
NTSC and 275-277 for PAL/ISECAM. This is done for the entirety of those lines, so this also requires GTIA's
horizontal counter to free-run to continue driving horizontal sync pulses. GTIA inverts sync during this period so
that sync pulses are inverted during this period, with the video signal at sync level for most of the time and briefly
returning to OV during the horizontal sync periods.

Opening the vertical border

As described in the ANTIC display list section, entering vertical blank with a hires mode in ANTIC’s Instructrion
Register (IR) can affect the way GTIA processes vertical blank. The specific conditions required are:

- The last display list instruction byte fetched by ANTIC corresponds to a hires mode (2, 3, or F). Typically,
the last instruction byte is a JVB instruction ($41), which prevents this bug from happening.

« Playfield DMA is enabled.

When these two conditions are both true, ANTIC fails to hold horizontal blank active and instead runs a normal
visible region. This enables graphics generation in GTIA, including both playfield and P/M graphics.

The cause of this is the graphics encoding logic in ANTIC. The graphics shift register is emptied by the time
vertical blank starts, so the lores logic only emits background encoding (%000) and doesn’t affect vertical blank.
However, the hires encoding logic needs to set AN2=1 for the playfield region regardless of the playfield data,
and this disrupts the encoding of the blanking and sync signals.

Effects on vertical sync

The most serious effect of this bug is a disruption of vertical sync. If the bug is triggered and playfield DMA is left
active across the normal vertical sync time, ANTIC will signal a hires playfield %10 pattern instead of vertical
sync during the active horizontal region. This effectively disables vertical sync and typically results in no display
or at least a rolling display.

Effects on horizontal sync

Outside of the vertical sync region, it is also possible to affect horizontal sync timing. ANTIC still enforces
horizontal blank during vertical blank, so the normal horizontal blank periods cannot be overridden. However, it is
possible to shift GTIA's horizontal blank and sync timing away from ANTIC's timing by resetting GTIA's horizontal
counter, which happens whenever horizontal blank starts. This is done by disabling previously enabled playfield
DMA during the active horizontal region through DMACTL[1:0], switching the ANx encoding back to blanking.

When this occurs, GTIA restarts its horizontal counter and begins horizontal blank timing immediately. This
causes horizontal sync and color burst to be emitted abnormally mid-line. This can be done repeatedly to trigger
even more sync/burst pairs. Additionally, if playfield DMA is kept disabled until normal horizontal blank, GTIA will
continue to ignore ANTIC's timing as the blanking signal will already have been active, giving no starting edge to
trigger horizontal resynchronization. If playfield DMA is kept disabled, GTIA's horizontal counter will continue to
free-run and emit new sync and color burst pulses every 114 cycles at the wrong offset.

The situation continues until GTIA sees a normal transition from non-blanking to blanking region. This will
happen if playfield DMA is enabled across the normal HBLANK start, resyncing GTIA back to ANTIC's horizontal
timing. If this doesn’t happen during vertical blank, then it will be forced at the end of the first non-blanking line
(8), since by that time ANTIC will not be attempting to hold blanking active across the active region regardless of
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DMACTL. Thus, it is not possible to shift horizontal sync timing in lines 9-247.
Horizontal sync timing during vertical sync

During vertical sync, the horizontal sync logic is modified to instead emit serration pulses in the middle of the
vertical sync pulse. This is done within GTIA by shifting the end of horizontal sync from shortly after hsync start
to near the end of the horizontal line count, stretching the hsync pulse to almost the full line time.

As a result, toggling playfield DMA has a somewhat different effect on vertical sync. The horizontal counter is still
reset upon disabling playfield DMA, but the effect on sync from toggling playfield DMA is more immediate: the
serration starts immediately upon enabling the playfield and ends at hsync start time upon disabling it, instead of
starting and ending at the hsync start/end times.

6.3 Color encoding

Color registers

For the most part, colors are encoded in GTIA through a palette of color registers, where displayed data refers to
a color register and that register provides the actual color used. Changing the color register changes the color of
all objects using that color register.

There are nine write-only color registers on the GTIA. COLBK is the background/border color register, COLPFO-
3 are the playfield color registers, and COLPMO-3 are the player/missile color registers.

Color encoding

The high four bits of each color register encodes the hue, with 0 being a special value indicating no color
(grayscale). Bits 1-3 encode the luminance (brightness) of the color, with 000 being the darkest and 111 being
the brightest. Note that the luminance does not affect the saturation of the color, so a luminance of 0 does not
mean black if hue is non-zero. The two fields together allow for 128 distinct colors.

Bit 0 of any data written to a color register is ignored. Although the GTIA can display 256 colors, this is only
possible through the special 16 luminance mode and not through the color registers. The lowest luminance bit is
always 0 for any output from a color register.

A word on colors

The actual colors produced by GTIA differ for each computer, depending on the setting of a tuning pot inside the
computer and also the display monitor hooked up to it. This has led to a lot of disagreement about what colors
result from each hue value. Even official Atari documentation differs. For instance, the Atari BASIC Reference
Manual and the Hardware Manual specify that hues 1 and 15 should have different colors, whereas the 400/800
Service Manual advises adjusting the SALT color bar test pattern so that they have the same color. As such,
there is no single authoritative, official answer on what colors each hue value should provide. This must
be kept in mind when choosing color values.

Another important issue is that the versions of the GTIA produced for the three main TV encoding standards —
NTSC, PAL, and SECAM — all differ in the way they encode color.

NTSC color encoding

An NTSC GTIA produces color by phase shifting a square wave at the same frequency as the NTSC color
subcarrier. This generates different, evenly-spaced hues. Because the strength of the color signal is independent
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of the brightness, colors with low brightness are much more saturated than ones with higher brightness. Hue
value 0 does not produce any color signal and therefore produces pure grays.

The TV's color circuitry is synchronized to GTIA's color output by means of a color burst emitted during
horizontal blank. The phase of this signal corresponds to a light yellow-orange color, sometimes called “gold.”
GTIA then produces colors by emitting a color subcarrier with various phase shifts from the color burst, with all of
the phase shifts evenly spaced. Hue 1 has one unit of phase delay, and each successive hue has additional
multiples of delay added. The delay is nominally around 24°. Ascending hues, and therefore increasing delays,
produce colors of orange, red, purple, blue, cyan, green, lime, and finally light yellow-orange again.

The delay between the hue phases is adjustable by a trimpot on the motherboard. This affects each delay stage
and therefore has greater effect on higher hue numbers. The last hue, hue 15, varies the most as it is at the end
of all delay stages and therefore has the most sensitivity to the color adjustment. Depending on the adjustment,

its output can range from green, to yellow, to even orange if it wraps around past hue 1. In contrast, hue 1 varies
very little except due to display differences, and low-numbered hues have less variation between systems.

NTSC brightness encoding

The four-bit brightness value specified in color registers or produced by blending is converted to a brightness
(luminance) signal with roughly equal steps, with 0 = black and 15 = white. There are two quirks in this
conversion in hardware to be aware of, however.

The first quirk is that brightness levels 7 and 8 can be spaced closer together than the rest of the steps, almost
identical.

The second quirk is that brightness level 0 is “blacker than black.” This is because of a difference between
blanking level and black level in most NTSC varieties (except for NTSC-J), where blanking is at 0 IRE, black is at
7.5 IRE, and white is at 100 IRE. The Atari encodes brightness level O at blanking level, putting it at about -8%
on a scale of black to white.

PAL color encoding

PAL encodes color differently than NTSC, and thus the PAL GTIA uses a different strategy to generate colors.
The main issue is that one of the color subcarrier axes reverses phases on every scan line, so different phases
are required to produce the same color. Like the NTSC GTIA, the PAL GTIA uses a delay line to produce
different phases, but different phases are used for even and odd scan lines, and the spacing between the hues
is also not even.

The phases used by the PAL GTIA for the various colors are as follows, in terms of delays (angles are ideal
given a 22.5° delay):

Hue | Even lines | Odd lines |Ideal UV angle
11 5 135.0°
20 6 112.5°
3|7 (inverted) | 7 90.0°
416 (inverted) |0 (inverted) 67.5°
515 (inverted) |1 (inverted) 45.0°
6|4 (inverted) | 2 (inverted) 22.5°
712 (inverted) |4 (inverted) 337.5°
8|1 (inverted) |5 (inverted) 315.0°

Chapter 6 - CTIAIGTIA

131




Altirra Hardware Reference Manual Created by Avery Lee

Hue | Even lines | Odd lines |Ideal UV angle
910 (inverted) |6 (inverted) 292.5°
107 7 (inverted) 270.0°
115 1 225.0°
124 2 202.5°
13|13 3 180.0°
142 4 157.5°
15/1 5 135.0°

Table 14: PAL GTIA color encodings

Hue 1 is used for the color burst, which uses an angle of 135° and 225° on alternating lines, the latter of which is
converted back to 135° in UV space by the alternating line inversion. The reversal of the color subcarrier
direction between scan lines means that colors can display different hues between even and off scan lines
depending on the color adjustment.

The greater complexity of the encoding scheme means that encoded colors from a PAL system have less
variance than an NTSC system, and the “correct” color adjustment for PAL is more apparent. Hues 1 and 15 are
always the same, for instance, because they are hardcoded to the same delays. The offset due to inversion on
hues 3-10 is always 180° regardless of the adjustment. Finally, while the stable reference color on NTSC is hue
1, on PAL it is hue 13.

Regarding the actual colors produced, the U-V color encoding space used by PAL is related to the I-Q color
encoding space used by NTSC by a flip and a 33° rotation. The color burst emitted by NTSC systems lies at
180° in the U-V coordinate space. While NTSC systems nominally have their colors spaced by 23-26°, in the
PAL encoding they are spaced by uneven multiples of 22.5°, leading to wider gaps between hues 6 and 7 and
hues 10 and 11.

PAL color blending

To combat hue shifting problems that occur with NTSC, PAL reverses the phase direction of the color subcarrier
on alternating scanlines. This has the effect of reversing the direction of phase errors as well. For instance, if a
signal transmission issue caused color signal phase to advance on each scan line between the encoder and the
decoder, this would result in alternating increasing and decreasing angles in U-V space. Decoders can take
advantage of this by combining color from adjacent scan lines, canceling the phase error at the cost of
decreased saturation. A common way is to average in the color from the previous scan line via a delay line.

This effect can be used to blend colors between scan lines. Alternating mode 9 and 11 lines, for instance, will
mix the gray level from the mode 9 lines with the color from the mode 11 lines, producing a more pseudo-256
color mode. Note that the blending effect only pertains to chroma and not luma.

6.4 Artifacting

Composite video encodes both brightness (luma) and color (chroma) together into the same signal. The decoder
separates these imperfectly, which leads to the ability for the luma signal to produce colors when specific
patterns are used. This is known as artifacting and can be used to deliberately encode colors without using the
color hardware in the computer, particularly in hires modes that do not have the ability to directly produce colors
from the playfield. The resulting colors depend strongly on the specific model of computer hardware.

Artifacting only occurs with a composite video or RF connection. With separate Y/C (S-Video) outputs, the luma
and chroma signals are never combined and there is no artifacting.
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NTSC composite sighal encoding

The chroma signal for NTSC is encoded using quadrature amplitude modulation (QAM) at the color subcarrier
frequency, 3.579545MHz. This results in a sine wave where the phase of the sine wave determines the hue and
the amplitude determines the saturation. Lack of this signal therefore produces no color. In order to decode this
signal, the receiver must have a phase reference, which is provided by a color burst of defined phase and color
in horizontal blank.

Besides hue/saturation, there is another interpretation of the color signal, which the sum of two separate | and Q
signals. | is the in-phase signal, while Q is the quadrature signal. Both are encoded as sine and cosine waves 90
degrees apart in phase, and the sum of the two is the color signal. The two representations are equivalent; I-Q is
the Cartesian (X-Y) representation, while hue/saturation is the polar (phase/magnitude) representation.

Lumal/chroma crosstalk

In order to recover the luma and chroma from the composite signal, the decoder must separate the two signals.
This is done imperfectly and the result is crosstalk between the two signals. When part of the original luma signal
is decoded as chroma, artifacted color results.

Some of this results from imperfect separation circuitry in the decoder, but there are situations where it is
theoretically impossible to separate the two. The primary issue is if the luma signal has a component at the color
subcarrier frequency, since signal theory says that such a signal can be decomposed into the sum of a sine
wave at that frequency and higher frequency harmonics. This makes it impossible to distinguish the fundamental
sine wave in the luma signal from the chroma subcarrier. Avoiding this conflict requires the encoder to exclude
chroma-like signals from the luma signal before mixing the two. The computer does not do this, which allows for
false colors.

The literature for standard NTSC has references to this effect being avoided due to the luma and chroma
sequences interleaving in frequency space as offset combs. This is due to the line and fields rates being an odd
number of color cycles, which causes the color subcarrier to invert phase on adjacent lines and fields. In old TVs
where the color subcarrier is visible, this shows as a fine checkerboard slowly moving up. A comb filter can then
take advantage of this by combining adjacent lines or fields to cancel the color subcarrier. Unfortunately, the
computer’s output deviates from this and generates a signal that is a whole number of color cycles per line and
frame. The effect is that the color subcarrier doesn't invert phase between adjacent lines or frames, and the
frequency combs of the luma and chroma signals overlap instead of interleaving.

Artifacted color hues

In order to produce stable artifacted colors, the phase relationship between luma and chroma must be known.
The NTSC GTIA produces pixels using a pixel clock (dot clock) that is a multiple of the chroma subcarrier, thus
producing stable hues. The highest resolution lores modes use a pixel clock at the chroma subcarrier frequency
f<c = 3.58MHz, too low to produce artifacted colors. The hires modes, however, use 2 x f,c = 7.16MHz, which
means that alternating pixel patterns produce a signal at the chroma subcarrier rate. Two hues are thus available
for even and odd patterns.

The colors produced by the even and odd pattern vary, however. The colors produced by the two patterns will
always have the same saturation and opposite hues, by virtue of being signal inverses of each other, and the
average of the signal means that the brightness will be halfway (approx. luma 7). The hues, however, depend on
the relative phase offset between the luma signal and the color burst produced by GTIA in horizontal blank. This
varies for different computer models due to differences in the video output circuitry resulting in different delays
between luma and chroma. The most common combinations produced are blue/green on 800s, purple/green on
XLs, and red/blue on XEs. The GTIA color adjustment does not affect artifacted hues, however, since it doesn’t
affect color 1, which doubles as the color burst.

Note that while the hues for even and odd patterns are opposite in the signal, they are not necessarily exactly
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opposite when displayed. A major reason for this is that artifacted colors are often so highly saturated that they
fall outside of the displayable color range (gamut) of the display, causing the hues to shift when the color values
are clamped to range. For instance, it is impossible for a display to produce negative color. This can particularly
lead to noticeable differences in the displayed artifacted color between a computer monitor and a TV. The
brighter display of the TV can provide more headroom in RGB space than the monitor for the same signal,
causing the monitor to clamp more than the TV. The result is the TV showing blue/green artifacting, while the
monitor clamps those colors to purple/green.

Brightness and saturation of artifacted colors

How saturated artifacted colors depends on the relative strength of the 3.58MHz waveform in the luma signal
relative to the color burst. For the luma signal, this depends on the difference in brightness between the even
and odd pixels. For instance, alternating luma 0 and 4 gives about the same saturation as 10 and 14.%

The other factor is the strength of the color burst, which varies between computer models. A strong color burst
gives weaker artifacting, while a weak color burst gives stronger artifacting. Out of three sampled NTSC
computers, an 800 had the weakest color signal with color burst peak-to-peak of about 4 luma units, an 800XL
about 8, and a 130XE about 14. Correspondingly, the 800 showed the most saturated artifacting colors.

The brightness of artifacted colors is more straightforward, as it is simply the average of the luma pixels — the
result after the fsc component has been separated out.

Mixing artifacted and non-artifacted colors

When conventionally generated colors are mixed with artifacted colors, the result is the additive blend of the two,
since the luma and chroma signals are added together, causing their color signal components to also add. This
addition occurs in the I-Q space that the chroma is encoded in. Since YIQ is related to YUV and RGB by linear
transforms, this is also equivalently an addition in those color spaces.

PAL artifacting

It is also possible to produce artifacted colors in the PAL system, though the technique and interpretation is more
complex. One of the main differences is the color subcarrier is at a higher frequency, 4.43MHz instead of
3.58MHz. This is a factor of 5/4 faster than the NTSC subcarrier and results in the subcarrier no longer matching
the dot clock. Instead, 5 color cycles align with 4 lores pixels, giving a larger repeating pattern than the simple
even/odd patterns with NTSC.

PAL alternation

The phase reversal of PAL on alternating scanlines also affects the colors produced through artifacting, since it
also requires the pattern to be reversed on successive scanlines to produce a consistent hue. This produces a
herringbone or interrupted checkerboard pattern. This pattern can be placed at four different offsets for four
different hues.

Two additional hues are possible by deliberately not reversing the phase direction of the pattern and instead
using vertical stripes as with NTSC. This causes the pattern to have opposite V axis values on adjacent
scanlines, which are then cancelled by the receiver. The result is blue and yellow, the two colors on the U axis.

6.5 Player/missile graphics

GTIA supports display of eight sprites on top of the playfield. These sprites can have distinct colors and can be

[31] The difference in signal strength between 0/4 and 10/14 isn’t exactly the same in practice, since the luma steps are slightly uneven.

Chapter 6 - CTIAIGTIA 134



Altirra Hardware Reference Manual Created by Avery Lee

moved horizontally much more quickly than the playfield for fast action. Four of the sprites are 8-bit wide players
and four are two-bit wide missiles. All sprites are the height of the screen and can be as tall as desired. It is also
possible to reposition sprites horizontally in the middle of the screen in order to increase the number of visible
objects on screen.

Player/missile colors

Four color registers are reserved for player/missile graphics, COLPMO-3. Each player shares its color with the
missile of the same number.

Player/missile graphics DMA

The default method for GTIA to receive player/missile graphics data is for ANTIC DMA to read it on a scan line
basis, thus relieving the CPU of the burden of spoon-feeding graphics data. In order for this to happen, either
bits 2 or 3 of DMACTL in ANTIC must be set to enable DMA, and the corresponding bits 0 and 1 of GRACTL
must be set in GTIA to receive data. The graphics data registers GRAFP0-P3 and GRAFM are then accordingly
loaded automatically at the beginning of each scan line.

If player or missile DMA is only set in GRACTL and not in DMACTL, then two odd effects can occur. First, if only
missile DMA is enabled on ANTIC, but player DMA is enabled in GTIA, then the players will be loaded with
whatever bytes are active on the bus while the CPU is executing during cycles 2-5 of the scan line. Second, if
P/M DMA is entirely disabled on ANTIC, it is possible for GTIA to mistake a display list fetch for the missile fetch,
because the first halted cycle within horizontal blank is considered to be the missile fetch. This causes GTIA to
read the display list instruction as missile data and to load players at cycles 3-7 instead of 2-5.

When P/M graphics DMA is stopped on the GTIA side, the graphics data registers retain the last value loaded
into them. This results in full-height stripes on screen unless the objects are subsequently repositioned or have
their data registers cleared.

Graphic data registers

The CPU can also load directly into the graphics data registers for players and missiles by writing to GRAFP0-3
and GRAFM directly. This allows the CPU to directly control P/M graphics data when ANTIC DMA is
inconvenient. It also allows vertical bar patterns to be displayed without requiring data in memory, since the
graphics latches can be loaded once and GTIA will reuse the same pattern for each scan line.

Vertical delay

Vertical delay is used to move a two-line resolution sprite with scan line resolution. Unlike the Atari 2600's TIA,
the GTIA does not have a true vertical delay function with a delayed graphics latch. Instead, the “vertical delay”
function works by masking DMA fetches. Setting the bit for a sprite in the VDELAY register causes GTIA to load
DMA data for that sprite only on odd scan lines. In two-line resolution mode, when ANTIC repeats the same data
on pairs of scan lines, this effectively moves the sprite image down by one scan line. In one-line resolution
mode, this effectively reduces the sprite to two-line resolution.

VDELAY has no effect on writes from the CPU to GRAFPO0-3 or GRAFM.
Player/missile positioning

The eight P/M objects are positioned along their left side via registers HPOSP0-HPOSP3 [D400-D403] and
HPOSMO0-HPOSM3 [D404-D407]. Position registers have color clock resolution. A player or missile begins
shifting its output to the video display when the horizontal position counter matches the position register; this
happens even if the object is positioned in the horizontal blank region (pos < $22), as long as part of it is in the
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visible region.

The center of the playfield is at the pixel boundary between $7F and $80. This means that the narrow playfield
spans $40-$BF, the normal playfield $30-$CF, and the wide playfield $2C-$DD (visible portion of $20-$DF).

Size control

Each of the players and missiles can be set to one of three widths, with each bit displaying as one color clock
(single width), two color clocks (double width), or four color clocks (quadruple width). Player widths are set by
SIZEPO-SIZEPS3; missile widths are set by SIZEM. Objects are always positioned from their left edge, so
increasing a object's width causes it to expand to the right.

Shift triggering and timing

An object's image is produced by a shift register that gradually shifts out bits to the left. The timing of this shifter
is controlled by a horizontal position comparator and a state machine controlled by the size setting.

A player or missile's shift register is loaded and begins shifting when the horizontal position of the object
matches the horizontal position counter. This is checked every color cycle, so changing the position in the middle
of the scan line can result in missing or duplicated object images. Moving it to the left of the current position
prevents the object from triggering, and moving it to the right sets it up to trigger at the new position. Repeatedly
moving the object to the right will cause it to appear multiple times. Because only the trigger point at the left side
of the object matters, changing the position in the middle of the object's image has no effect and the object will
continue to shift out at the same position.

The player/missile shift registers are constantly running, even across horizontal and vertical blank. This means
that unlike with the 2600's TIA, positioning a player partially off-screen horizontally will show a partial object
within the display region and not wrap the image within it. It is possible, however, for overlap and lockup effects
to be carried over from vertical blank into the display of the next frame.

Overlapping object images

When the horizontal comparator matches, the shift register is reloaded with the contents of the graphics data
register. This is done by ORing the latch data into the shift register. Ordinarily the shift register will have long
emptied and therefore the shift register contents afterward will be that of the data register. However, if the image
has not yet completed shifted out, some of the old bits from the previous image will still be in the register and
combined with the new image.

Shift state machine

The timing of the shift register is controlled by a two-bit state machine whose operation is directed by the object's
size setting. This state machine effectively counts off the color clocks for each bit in the sprite image, starting at
%00 and going up to %11 for a quadruple width register. A shift register occurs each time the state machine
transitions to the %00 state, which is forced whenever the shift register is reloaded. The operation of this state
machine can be expressed simply:

state' = (state + 1) AND size

Thus, for normal width (%00) the shifter stays in %00 state and shifts out at a rate of one color clock per bit,
whereas with quadruple width (%11) the shifter counts from %00 to %11 and shifts at out four color clocks per
bit.
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Original New size Pixels before size change Pixels after size change
size
1x 2X 00 00 00 00 01 00 01 00
1x 4x 00 00 00 00 01 10 11 00
2X 1x 01 00 01 00 00 00 00 00
00 01 00 01 00 00 00 00
2X 4x 01 00 01 00 01 10 11 00
00 01 00 01 10 11 00 01
4x 1x 01 10 11 00 00 00 00 00
10 11 00 01 00 00 00 00
11 00 01 10 00 00 00 00
00 01 10 11 00 00 00 00
4x 2x 01 10 11 00 01 00 01 00
10 11 00 01 00 01 00 01
11 00 01 10 01 00 01 00
00 01 10 11 00 01 00 01
00 01 00 00 00 00 00 00
4x 1x* 01 10 11 00 00 00 00 00
10 11 00 01
11 00 01 10
00 01 10 11 00 00 00 00

Table 15: Results of various size changes in the middle of a player image

Mid-image size changes

Changing the size of an object causes its shift register to immediately begin shifting with the new width, but using
the existing shift state. For the most part, this causes the shift register to finish shifting out its current pixel at the
new width, but this leads to some strange patterns when switching to and from double width. Table 15 shows the
effects of various size changes.

Shift register lockup anomaly

The size code %10 produces a normal width sprite similarly to the %00 code. However, the state machine acts
slightly differently than the %10 mode in that it has a lockup state not present with %00. Specifically, switching an
object to the %10 mode when it is in double or quadruple width and in the %01 or %10 state results in the shift
register getting stuck in the %10 state and continuously outputting the same bit. These cases are shown in red in
Table 15. This condition persists as long as the size is not changed again and object is not retriggered, even
across horizontal and vertical blank into the next frame. Typically this does not cause problems unless the size is
changed in the middle of an image, as otherwise the shift register will have emptied out anyway.
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6.6 Collision detection

GTIA has 60 collision bits to indicate when players, missiles, and the playfield collide. This permits fast collision
detection at pixel-exact level without the need for the CPU to do expensive bounding box or image comparison
checks.

Collision detection mechanism

A collision is flagged between two objects when both objects are active at the same time during display. This
means that a collision is not detected until the display logic actually processes the collision location on-screen,
and the CPU must wait until the end of a frame or at least past the point of object display in order for collisions to
be reliably detected.

Color registers do not play a part in collision detection — the collision logic can distinguish between two objects of
the same color. This is sometimes used to establish hidden collision objects for gameplay purposes, such as an
invisible wall or a trigger. The collision logic can also see collisions between two objects even if a third object is
displayed on top. Collisions are reported for all pairs of colliding objects, so if three players overlap, six collisions
are reported: POP1, POP2, P1PO, P1P2, P2P0, P2P1.

Playfield collisions

For collision detection purposes, the non-background playfield colors are each separate entities that can register
collisions with players and missiles. 32 collision bits in eight registers, POPF-P3PF and MOPF-M3PF, are devoted
to registering P/M collisions against PFO-PF3. No collisions are detected against the background.

In high resolution mode (ANTIC modes 2, 3, and F), the areas corresponding to a 1 bit in the graphics data are
considered to be PF2 for collision purposes. Each pair of high-resolution pixels is combined and a collision is
detected if either pixel is set where a sprite is present. No collisions are registered against areas with a 0 bit
even though those are displayed as non-background color.

No playfield collisions are detected in GTIA modes 9 and 11. In GTIA mode 10, a playfield collision will register
whenever pixels using PFO-PF3 codes are present. No P/M collisions are reported for playfield pixels that use
P/M color codes in a GTIA mode 10 screen.

Player/missile collisions

Twelve collision bits report collisions between players. A collision between player X and player Y sets two bits,
one for player X in the PyPL register and another for player Y in the PxPL register. A player never registers a
collision with itself and the self-collision bit for a player is always O.

Sixteen collision bits in registers MOPL-M3PL report collisions between players and missiles. Each register
indicates collisions between all four players against each missile.

There is no support for collision detection between missiles.
Horizontal and vertical blank

P/M collisions are only registered during the visible portions of the screen refresh and are ignored during
horizontal and vertical blank. This means that only the portions of objects at horizontal positions 34-221 ($22-
$DD) and in scan lines 8-247 ($08-$F7) can trigger collisions.

An object that is so far left or right that it is in partially in horizontal blank can still register collisions in the part
that is in the visible region.
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Note that if ANTIC fails to activate vertical blank due to having hi-res active on scan line 247, GTIA will process
P/M graphics and can report collisions in scan lines in the 248-7 range when the playfield is enabled.

Resetting collision latches

The collision detection bits are latches and will stay set once a collision has been detected. Writing to HITCLR
resets all collision latches to zero.

6.7 Priority control

Playfield/object priority

The GTIA uses a priority scheme to determine which objects to display when multiple objects overlap. Bits 0-3 of
PRIOR control the relative priority between player/missiles and the playfields. The four official modes are as
follows®;

PRIOR[3:0] /1000 | 0100 | 0010 | 0001

Top PFO | PFO | PO | PO
PF1|PF1| P1 | P1
PO | PF2 | PFO | P2
Pl | PF3 | PF1| P3
P2 | PO | PF2| PFO
P3 | P1 | PF3| PF1
PF2| P2 | P2 | PF2
PF3| P3 | P3 | PF3
Bottom | BAK | BAK | BAK | BAK

Note that the official hardware manual lists the fifth player (P5) as having the same priority as PF3. This is only
partially true, as P5 actually assumes the priority of the highest priority playfield; more on this later.

The exact logic used by GTIA for resolving playfield and player/missile priorities is as follows:

PRIO1 = PRIO + PRI1
PRI12 = PRI1 + PRI2

PRI23 = PRI2 + PRI3

PRIO3 = PRIO + PRI3

SPO = PO * /(PFO1*PRI23) * /(PRI2*PF23)

SP1 = P1 * /(PFO1*PRI23) * /(PRI2*PF23) * (/PO + MULTI)

SP2 = P2 * /PO1 * /(PF23*PRI12) * /(PFO1*/PRIO)

SP3 = P3 * /PO1 * /(PF23*PRI12) * /(PFO1*/PRIO) * (/P2 + MULTI)
SFO = PFO * /(P23*PRIO) * /(PO1*PRIO1) * /SF3

SF1 = PF1 * /(P23*PRI0O) * /(PO1*PRIO1) * /SF3

SF2 = PF2 * /(P23*PRI0O3) * /(PO1*/PRI2) * /SF3

SF3 = PF3 * /(P23*PRI0O3) * /(PO1*/PRI2)

SB = /P01 * /P23 * /PFO1 * /PF23

In this form, the priority bits enable specific signals that cause elements to suppress lower priority elements.

[32] Hardware 111.8
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Priority mode 0

Clearing all four priority bits PRIOR[3:0] causes the all of the cross-disable signals in the priority logic to turn off,
enabling some combinations to mix. The reduced logic for this mode is as follows:

SPO = PO

SP1 = P1 * (/PO + MULTI)

SP2 = P2 * /PO1 * /PFO1

SP3 = P3 * /P01 * /PFO1 * (/P2 + MULTI)
SFO = PFO * /SF3

SF1 = PF1 * /SF3

SF2 = PF2 * /P01

SF3 = PF3 * /P01

The effect is to allow playfields 0 and 1 to mix with players 0 and 1, and playfields 2 and 3 to mix with players 2
and 3. The result of two colors mixing is the bitwise OR of their color register contents. PFO/PF1/P0/P1 still have
priority over PF2/PF3/P2/P3.

Conflicting priority bits

If more than one priority bit is set, then the more of the cross-disable signals are activated than usual, and the
result is that the priority logic turns off outputs more often. This leads to cases where no signals are output,
including the background, and the output is black (color $00).

Active layers PRIOR][3:0] bits

0011 |0101 |0110 |0111 |1001 |10120 |1011 |l1l100 |1101 (1110 |1111
PFO01+P0O1 PO1 black |black |black |black |black |black |PFO1 |black |black |black
PF01+P01+P23
PF01+P23 P23 P23 PFO1 |P23 P23 PFO1 |P23 PFO1 |P23 PFO1 |P23
PF23+P01 PO1 PF23 |PF23 |PF23 |PO1 PO1 PO1 PF23 |PF23 |PF23 |PF23
PF23+P23 black |black |PF23 |black |P23 black |black |black |black |black |black
PF23+P01+P23 PO1 black |PF23 |black |PO1 PO1 PO1 black |black |black |black
P5+P01 PO1 P5 P5 P5 P01 PO1 PO1 P5 P5 P5 P5
P5+PF23+P01
P5+P23 black |P23 P5 black |P23 black |black |P23 black |black |black
P5+P01+P23 PO1 black |P5 black |PO1 PO1 PO1 PO1 black |black |black
P5+PF01+P01 PO1 P5 P5 P5 black |black |black |P5 P5 P5 P5
P5+PF01+P23 black |black |P5 black |P23 black |black |black |black |black |black
P5+PF23+P23
P5+PF01+P01+P23 | P01 black |P5 black |black |black |black |black |black |black |black
P5+PF23+P01+P23 | PO1 black |P5 black |PO1 PO1 PO1 black |black |black |black

Table 16: Priority logic outputs for unusual priority modes

In the above table, P01 is player 0 or 1, P23 is player 2 or 3, PFO1 is playfield O or 1, PF23 is playfield 2 or 3,
and P5 is the fifth player (missiles). If fifth player mode is disabled, PO1 and P23 also include the missiles.

All conflicts that produce black are the result of combinations involving players and playfield, where the fifth
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player counts as PF3. Combinations between players alone or playfields and the fifth player are always resolved
and never produce black.

Fifth player enable

PRIOR bit 4 changes the layer of all four missiles to that of playfield 3 (PF3), thus allowing them to be used as a
fifth player. No other change to the missiles occurs — the missiles retain independent positions and sizes, and in
order to be used as a “fifth player” they must be moved together manually. This means, however, that it is
possible to take advantage of just the color change and still position the missiles in different places on screen.

Enabling fifth player mode also switches the priority of the missiles to that of playfield 3, except that it always
wins against all other playfields. This leads to a contradiction in the priority mode set by PRIOR[3:0] = %1000,
where the playfields are split by players in priority order. In this configuration, PFO-PF1 should cover PO-P3,
which should in turn cover PF2-PF3. However, because PF3 actually overrides PFO-PF2 in order to
accommodate the fifth player, this leads to the odd result that when all of the following are active:

e Either PFO or PF1
e At least one of PO-P3
e The fifth player

...PF3 actually shows up from the fifth player in this case, because PFO/PF1 overrides the players, and then PF3
overrides PFO/PF1. However, if PFO/PF1 is taken away, then PO-P3 show up instead.

Enabling the fifth player does not affect collisions in any way. Even though it changes all missiles to use the PF3
color, each individual missile still registers collisions against playfields and players as usual, and no extra PF3
collisions result.

The fifth player has odd interactions with the 16 luma and 16 color modes. The logic that prevents the playfield
values from being impressed onto the players only checks the inputs that contribute to player colors. The fifth
player bypasses this such that when it is active in these modes, the result is the PF3 color impressed with the
luminance or color specified by the playfield.

Multiple color player enable

By setting PRIOR bit 5, it is possible to blend players together in order to produce additional colors. The pairs
that blend are PO+P1, P2+P3, MO+M1, and M2+M3. This works simply by disabling the priority logic between
these pairs, thus allowing both colors to contribute to the output. The resultant color is the bitwise OR of the color
registers involved.

Multiple color mode has no effect on collision detection.

6.8 High resolution mode (ANTIC modes 2, 3, and F)

At the beginning of horizontal blank, ANTIC signals to the GTIA whether high resolution mode is enabled. This
mode is enabled for ANTIC modes 2, 3 and F and specifies whether the low two bits of playfield data for each
color clock is to be interpreted as individual bits for high resolution mode. This produces pixels at each half color
clock, or 320 pixels across for normal playfield width. However, as much of the logic in GTIA operates at color
clock rate, this necessitates some logic bypassing and thus some unusual behavior.

When high resolution mode is active, the priority logic always sees PF2, and that is the color that is used unless
that playfield is overlapped by players. The high resolution data bypasses the priority logic and conditionally
impresses only the luminance from PF1 onto the output. This takes place regardless of whatever color register is
used, so the change in luminance occurs on top of anything, including players, missiles, and the fifth player. The
collision logic, however, sees a modified PF2C output that is the OR of the two pixels in each color clock, thus
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registering collisions against PF2 as expected.
Pseudo ANTIC mode E

High resolution mode is forced off whenever any of the GTIA special modes are active, thus preventing the PF1
luminance substitution or PF2C collision from interfering. This leads to a quirk of the GTIA whenever PRIOR[7:6]
are set in the middle of a scan line. The high resolution flip-flop can only be set at horizontal blank, but it resets
any time PRIOR][7:6] is activated and stays off for the rest of the scan line even if those bits are reset to 00.
When this happens, ANTIC continues to encode data in high resolution mode while GTIA starts interpreting it as
low-resolution data. Due to the differences in ANx bus encoding, this causes ANTIC mode F to revert to a
pseudo mode E, where the bit pairs 00-11 encode PFO-PF3 instead of BAK + PFO-PF2.

6.9 GTIA special modes

Setting the top two bits of PRIOR to something other than 00 enables one of the three special GTIA modes.
These three modes have several features in common:

- Each pixel is elongated to occupy two color clocks, giving a resolution across of 80 pixels at normal
playfield width.

« The GTIA modes only work properly with the hi-res ANTIC modes 2, 3, and F.
« They allow access to more simultaneous colors per scan line than any other documented modes.

These modes only work with a GTIA chip. On rare older devices with a CTIA, the top two bits of PRIOR are
ignored.

Mode 9 (16 luminances in one color) (PRIOR[7:6] = 01)

Setting PRIOR[7:6] = 01 produces a playfield with a single color, but using sixteen luminance values. As this
occurs by bypassing the color registers, this is the only mode in which the lowest luminance bit can be set and
therefore 256 distinct color values produced instead of the usual 128. The color of the playfield comes from the
background color register. The luminance in the COLBK register is normally set to zero as otherwise it is OR’ed
with the playfield luminance values, reducing the total number of shades available.

For priority purposes, the mode 9 playfield is essentially background. No playfield collisions register, and P/M
graphics always have priority over the playfield. The playfield drops out in the presence of any player, even for
priority conflicts that produce black.

Missiles also have priority over the playfield like players, unless fifth player mode is enabled. When the fifth
player is enabled, however, it will mix with the playfield. The resulting color value is the bitwise OR of the PF3
register and the luminance of the playfield.

Mode 11 (16 colors in one luminance) (PRIOR[7:6] = 11)

With PRIOR][7:6] = 11, the playfield is instead a single luminance, but with any of all 16 hues specified by the
playfield data. The luminance comes from the background color register, with the exception of pixel value
%0000, which is always forced to luminance 0. The hue of COLBK is normally set to 0, or else it will be OR’ed
with the color values from the playfield, reducing the total number of colors available.

Mode 11 playfields interact with P/M graphics similarly as with mode 9. When the fifth player overlaps the
playfield, the result is as if the background color is replaced with PF3: PF3's luminance and hue OR’d with the
playfield's hue, except if the playfield is %0000 in which case the luminance is forced to O regardless of PF3’s
luminance.
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Mode 10 (9 color mode) (PRIOR[7:6] = 10)

The nine color mode, activated by PRIOR[7:6] = 10, is more unusual than the other two special modes. All of the
colors come from the color registers, giving more color flexibility, and causing more interaction with the priority
and collision logic.

The four bit pixel values activate color registers as follows:
« 0000-0011: PO-P3
e x100-x111: PFO-PF3
e 10xx: Background

For priority purposes, the pixel values which correspond to player colors act as though that player/missile were
active and are thus modified by the priority settings in PRIOR][0:3]. They do not, however, activate player
collisions. The nine color mode, however, is able to activate playfield collisions via the PFO-PF3 codes.

The nine color mode is delayed by one color clock (one half pixel) and thus appears shifted slightly right relative
to all other modes.

Border regions are rendered with a code of 0000 or player 0. This means that players and missiles 1-3 will
generally be hidden in borders except for when multicolor P/M or fifth player mode allows them to overcome
player in priority.

This mode has a quirk when driven with a low-resolution ANTIC display mode that does not occur with the 16
color/luminance modes. Ordinarily, the BAK and PFO signals from ANTIC produce the same result as they both
send 00 over the ANO and AN1 lines. However, in the 9 color mode, the BAK signal mutes the playfield signals
for the entire two color clock pixel when sent as the second half. This leads the a 9 color mode anomaly where
the four bit combination 1000 in ANTIC mode E results in the background color rather than the PFO color that the
resultant 0100 pixel would normally indicate.

Horizontally scrolling GTIA modes

GTIA modes can be horizontally scrolled like any other mode, with the extra provision that only even values of
HSCROL will work properly. This is because GTIA is unaware of ANTIC's horizontal scroll offset when it groups
bit pairs to form 4-bit pixels. Odd values of HSCROL will produce a valid display but mix the low two bits of one
pixel with the high two of bits of the next pixel to form new pixels instead of shifting the pixels, the same as if the
bitmap data were shifted by two bits. The fat pixels in GTIA modes cannot be horizontally shifted by finer than
two color clock precision by normal means.*

Mixing GTIA modes with low resolution modes

As previously noted, the GTIA modes only work properly with the high resolution modes 2, 3, and F. The reason
for this has to do with the encoding of the data on the ANO-2 bus between ANTIC and GTIA. While the highest
bandwidth modes have a raw data rate of two bits per color clock, the ANx bus actually has a bandwidth of three
bits per color clock, with ANTIC doing additional encoding of the data based on the display mode. The difference
in encoding between low-resolution and high-resolution modes prevents the GTIA modes from fully working
when ANTIC is set to a low-resolution mode.

The ANO-2 bus encodings are given in Table 17.%

[33] It has been reported that certain GTIA chips can shift mode 10 by a color clock when running warm, but this is neither reliable nor
program controllable.
[34] [AHS99a] p. 7

Chapter 6 - CTIAIGTIA 143



Altirra Hardware Reference Manual Created by Avery Lee

Encoding Lores Hires
000 Background
001 Vertical sync

010 Horizontal blank and switch to lores

011 Horizontal blank and switch to hires

100 PFO %00 pixel pair
101 PF1 %01 pixel pair
110 PF2 %210 pixel pair
111 PF3 %11 pixel pair

Table 17: ANx bus encodings

In low resolution modes, one pixel is sent per color clock, and in high resolution modes, two pixels are sent per
color clock. ANTIC signals the lores/hires state of the next scan line during horizontal blank and this then
determines GTIA's interpretation of the %100-%111 codes.

Normally, the GTIA modes are used with ANTIC high resolution modes, in which the raw bitmap data is sent on
ANO-1 two bits at a time. GTIA groups two pairs of bits at a time to form 4-bit pixels, which are then interpreted
according to the GTIA mode. The high order bit AN2 is ignored, so the background encoding is not distinguished
from a PFO or %00 bit pair encoding and the border works differently in GTIA modes.

In low resolution modes, the mapping from pixels to ANx encodings is not straightforward and causes problems
with GTIA modes. In particular, most four-color modes map BAK and PFO-PF2 instead of PFO-PF3. This makes
the available ANO-1 encodings %00, %00, %01, and %10, with %11 not represented. The result is that
attempting to use mode E, for instance, results in only 9 of the 16 pixel values being available with %11xx and
%xx11 patterns being unattainable. ANTIC modes 4-7 can send the PF3 encoding, but are relatively inflexible in
doing so.

6.10 Cycle timing

The following sections all assume that a write has taken place on cycle 65 of a scan line. In a normal width mode
E line, this would be immediately before ANTIC reads data for positions $8C-$8F.

Color register changes

A write to a color register takes place one color clock later, so a write to COLPMO at cycle 65 shows up on
screen at $81.

PIM priority changes
A write to PRIOR bits 0-3 or 5 takes place two color clocks later, so a write at cycle 65 shows up on screen at

$82.

The fifth player bit (PRIOR bit 4) normally also takes place two color clocks later at $82. However, on some
systems this circuit is temperature sensitive and shows a one-cycle artifact until $83 when the system has
warmed up.
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Changed Timing

Color register $81 (1 cclk)
PRIOR bits 0-3, 5 $82 (2 cclks)
PRIOR bit 4 $82-83 (2-3 cclks)
PRIOR bits 6-7 $83-85 (3-5 cclks)
Player/missile image | $83 (3 cclks)
Player/missile position |$85 (5 cclks)

Table 18: Timing for mid-screen writes to GTIA registers

PIM graphics changes

A write to a player/missile graphics register only takes effect when the sprite retriggers and its shift register is
reloaded. The delay for this is three color clocks. A write to GRAFPO at cycle 65 would only take effect for player
0 at $83 or later.

PIM position/size changes

A write to a player/missile position or size register must take place five color clocks in advance to take effect.
This means that a write on cycle 65 can prevent display of a player at or right of $85, and reposition it to $85 or
farther. Effectively, both the old and the new player image are clipped on the left side of $85.

Changes to the size register will take effect immediately, with the remaining bits in the shift register shifting out at
the new width. However, due to the design of the stretching circuitry, switching between double and quadruple
width is slightly erratic, with the double-to-quadruple change showing a slightly uneven relation and the
quadruple-to-double change being slightly non-monotonic. Changes to and from normal width are always well
behaved.

GTIA mode changes

A change to bits 6-7 of PRIOR takes place between 3-5 color clocks after the write, primarily after 4 color clocks
with a possible cycle of artifact on each side. For a write on cycle 65, the change takes place at positions $83-
$85. The nature of the artifact on-screen depends on the exact transition:

¢ Mode 8 to mode 9/11: Clean transition after 4 color clocks.
¢ Mode 8 to mode 10: Clean transition after 3 color clocks.

e Mode 9/11 to mode 8: 1-2 color clock transition after 3 color clocks. At $83, the mode 9/11 pixel is cut in
half and the playfield is absent, showing background color if there are no players or missiles. Pseudo
mode E display begins at $84, but the data from $83 is displayed instead. (Presumably this is an artifact
of timing sensitivity in disabling the mode 10 delay line.)

e Mode 10 to mode 8: One color clock transition after 4 color clocks.
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Machine-specific Behavior Warning

On some systems, the artifact at $84 does not occur when switching from mode 9/11 to mode 8.

6.11 General purpose I/O

Console switches

The CONSOL register controls and senses the state of four uncommitted 1/O lines, each of which can be used in
either read or write mode. Setting bits 0-3 to 1 causes the corresponding line to be pulled down and to read as a
0; clearing a bit allows the line to be read normally. On the Atari, bit 3 is connected to the console speaker and
bits 0-2 are connected to the Start, Select, and Option bits, respectively.

Trigger inputs

TRIGO-3 report the state of the trigger input lines. Bit 1-7 are always 0, while bit 0 reads 1 for an inactive trigger
and 0 for an active trigger. These are normally connected to joystick triggers. On the XL/XE, TRIG2 is hardwired
inactive while TRIG3 indicates cartridge mapping state, bit 0 = 1 for cartridge ROM present. The XEGS also
maps TRIG2 to a keyboard presence line, bit 0 = 1 for keyboard present.

Trigger latching can be enabled by setting bit 2 of GRACTL. This causes the trigger registers to latch so that they
continue to register activation even after a trigger is released, allowing trigger activation to be detected at any
time regardless of how often the TRIGO-3 registers are polled. Latching can only be enabled for all triggers at the
same time, however, so enabling it on an XL/XE machine will also affect cartridge map sensing.

The SECAM version of the GTIA, the FGTIA, has an additional quirk in that trigger inputs are only sensed at the
beginning of horizontal blank.

6.12 Further reading

The main source for functionality and register level descriptions for the GTIA is the Hardware Manual [ATA82] as
usual, but it only covers CTIA level of functionality. Read the GTIA datasheet [AHS99a] for additional details on
the GTIA modes and on communication between ANTIC and GTIA.
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7.1 Joystick

The Atari 8-bit computer series uses the same digital joystick used by the 2600 VCS. The direction sensors are
connected to four contiguous bits on the PIA. Ports 1 and 2 use port A, whereas ports 3 and 4 on the 400/800
use port B:

7 0
Port 2/4 Port 1/3
right ‘ left ‘ down ‘ up right ‘ left ‘ down ‘ up

All direction bits are inverted, so these ports register $FF either when no joysticks are attached or all connected
joysticks are centered.

There are generally no circuits to prevent both the left and right or up and down signals from being activated at
the same time. Although it normally does not occur due to the design of the joystick, both opposing signals can
be active at the same time either due to noise or simply due to another type of controller being plugged into the
joystick port.

The joystick button is attached to one of GTIA's TRIGx inputs. The trigger bit is also inverted, reading $00 when
the button is depressed and $01 when released.

7.2 Paddle

Paddle controllers consist of a single rotation knob and a trigger button. Two paddle controllers connect to a
single game controller port, so up to four paddles can be attached to an XL/XE and eight paddles to a 400/800.

Paddle knob

The rotating knob on each paddle sends a signal to the computer that allows it to read the angular position of the
knob with fine accuracy. On a standard CX30 paddle, the angular range of each paddle is about 330°. The
position of the knob is read through the POTO-POT?7 registers in POKEY, which have a range of 1-228 ($01-
$E4), where 1 is fully counterclockwise (left) and 228 is fully clockwise (right).

In order to read the paddles, the POTGO register must be written. This resets all counters and begins charging a
capacitor for each paddle through the potentiometer attached to the knob, where the position of the knob
controls the charge rate. Once a capacitor reaches the threshold, the corresponding bit in ALLPOT is set and a
scan line count is latched into the corresponding POTn register. As these counts are latched from a counter
running at scan line rate (15.7KHz), the count isn't actually latched until that number of scan lines has actually
passed. Typically the POTn values are read and then POTGO strobed from the vertical blank interrrupt.

The exact timing and values produced by this process depend on a couple of variables, specifically the voltage
threshold used by POKEY, the resistance range of the potentiometers in the paddles, and the value of the
charging capacitor. The ideal formula relating a paddle position as a fraction of the rotational range and the
voltage threshold is as follows:

scanlines=1n
Vcc - V threshold

VCC .
—)X(l— fraction) X RC X 15700

Vcce is 5V, Vthreshold is 1.9-2.6V*, R is 1IMQ for CX30 paddles®, C is 0.047uF, fraction is O for full left and 1 for
full right. Values will vary, particularly due to the wide range in threshold voltage, but for a threshold mid-value of

[35] [AHSO03] p. 22 (V- positive-going threshold voltage)
[36] There is a 1.8KQ resistor in the computer in series with the potentiometer, but it is small enough in comparison that it can be ignored.
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2.25V, this gives a scan line range of 1-441. Since the scan line counter only counts up to 228, this means that
only about half of the paddle range is used (mid way to full clockwise), the left side returning full 228. The above
formula is linear in fraction and the potentiometer in the CX30 is also linear, so the relationship between angular
position and the POTn values is also linear.

Paddle trigger

Each paddle also has a trigger button associated with it. The paddle trigger is connected to the PIA ports, as with
the joystick direction inputs. The lower of the paddle pairs — corresponding to POT0/2/4/6 — activates the left
direction (bits 2/6) and the higher of the paddle pairs activates the right direction (bits 3/7). As usual, the bits are
inverted and read as 0 when the button is activated.

Fast pot scan mode

POKEY can be configured to read the paddle inputs in two scan lines instead of 228 scan lines by means of
SKCTL bit 2, but this does not work with paddles for a couple of reasons. First, the paddles charge too slowly for
fast pot scan mode. The capacitance, charge rate, and threshold are still the same, so the POTn registers are
simply loaded with a value 114 times as large and the 0-229 value range covers only a tiny rotational range on
the right end.

The second issue is that the POTn registers will not consistently load. Normally, dumping transistors are turned
on momentarily when POTGO is strobed to empty the capacitors so they begin charging up voltage from empty.
These are disabled in fast pot scan mode, and thus the scan can start with capacitors already partially or fully

charged. If the capacitor is partially charged, it will reach threshold sooner and the recorded count will be lower
than expected. If the capacitor is already charged above threshold, the POTn register will not be updated at all.

7.3 Mouse

A computer mouse consists of up to three buttons and a pair of motion detectors. There are two types of mice
that can easily be connected to an 8-bit Atari, Atari ST and Amiga. The two types are similar, with minor
differences in the motion encoding.

The horizontal and vertical axes are encoded using quadrature encoding on pairs of control lines, producing
different cyclical patterns based on the direction of movement, either 00-01-11-10-00 or 00-10-11-01-00. The
pattern repeats indefinitely as long as the mouse is moving and there is no limit to how far the mouse can move.
The quadrature signals are connected to the joystick direction bits and are reflected in the PIA port, although the
wiring differs between the mouse types:

Bit 3/7 Bit 2/6 Bit 1/5 Bit 0/4
Joystick Right Left Down Up
ST mouse YB YA XA XB
Amiga mouse XB YB XA YA

The pattern 0/0, 1/0, 1/1, 0/1 signifies rightward motion for the XA/XB signals and downward motion for the

YA/YB signals.

The quadrature inputs must be sampled at a high rate in order for the mouse to work, as each change must be
detected for motion to be measured properly. For instance, if two changes were to occur between
measurements, i.e. 00 to 11, it would be impossible to determine the direction of motion. For a 100 cpi (counts
per inch) mouse, this requires a minimum sampling rate of 300Hz to support motion up to 3 inches/second, with
higher rates needed for faster motion or higher resolution mice. Checking the mouse from a VBI handler is

Chapter 7 - Accessories




Altirra Hardware Reference Manual Created by Avery Lee

therefore unlikely to produce satisfactory results.

There are up to three buttons on a mouse. The left mouse button is connected to the joystick trigger input and
can be read the same way; the right and middle mouse buttons, if present, are connected to the paddle A and B
inputs. Unfortunately, the mouse connects these lines to ground instead of +5V as the paddle does, so the Atari
hardware cannot read them — there is no circuitry hooked up in this configuration to charge the pot capacitors.

7.4 Light Pen/Gun

Light pen and light gun devices sense the electron beam of a cathode ray tube (CRT) monitor to report the
screen position of the device to the computer. They only work with CRTs that do single scan — they do not work
with CRTs that scan at 100/120Hz or with LCDs.

Sensing signal connection

As the light pen or gun senses the passing of the electron beam, it sends a pulse to the computer on the joystick
trigger input on its connected joystick port. On the 400, the device must be connected to port 4, but it may be
connected to any of the available ports on the 800/XL/XE models. Any trigger on any of the wired ports will
register a pen position, including a non-light-sensing device such as a joystick.

Position reporting mechanism

The appropriate trigger lines are connected to the light pen (LP) input on ANTIC, which latches the current
horizontal and vertical position counters into the PENH and PENV registers. This latching only occurs on the
edge when the line is asserted; if the trigger line is held down, such as from a joystick, the latched position will
reflect the time of depression. This mechanism also means that the PENH/V update occurs just after the video
signal for the sensed point is generated and drawn on the CRT by the beam, occurring earlier for higher
positions and later for lower positions.

The PENH register reports the horizontal position with color clock resolution, from 0-227, while PENV reports
the vertical position with two-line resolution, from 0-130 or 0-155, similar to VCOUNT. Latching is not limited to
the visible area of the screen; ANTIC will record a location in the border or even in the blanking intervals if a
pulse arrives during that time.

Note that the horizontal positions reported in PENH do not correspond to GTIA horizontal positions, for a couple
of reasons. One is that it is latched from ANTIC's horizontal position counter instead of GTIA's, and another is
delays in the display-to-light-pen-input path. PENH values are approximately 30-60 counts higher than GTIA
positions, depending on the display and light sensing device. This offset often causes PENH values to wrap from
$E3 to $00 within the active display region.

PENH and PENV will continue to reflect the last known position if no further trigger pulses arrive. They are not
cleared by vertical blank.

Note that it is possible for the PENH and PENYV registers to have any value in 0-255, even those corresponding
to invalid beam positions. This occurs because the pen position registers are not cleared on a reset and
therefore may have arbitrary contents on power-up. In particular, PENV may have the value $FF.

On-screen detection

There is no direct way to sense if a light-sensing device is aimed at the screen. However, since the timing signal
is connected to the trigger inputs, it is possible to read the TRIGO-3 registers on GTIA to determine this, since an
off-screen device will not send pulses. Typically bit 2 of GRACTL is set to enable latching on the trigger inputs,
making it easier to detect the pulse from a VBI routine. Otherwise, the triggering pulse can be very narrow and
difficult to catch, as quick as 16 cycles.
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7.5 CX-75 Light Pen

The Atari CX-75 light pen is a black device about the shape and size of a thick pen, with a pushable tip and a
thin cord to connect to the joystick port.

The measurements here were determined experimentally on a Commodore 1702 monitor attached to an NTSC
800XL.

Pickup range and offset

On a Commodore 1702 monitor driven from an NTSC 800XL, a single lo-res $0F pixel at the center of the
screen — hardware horizontal pos and vertical pos $80, position (80,80) on a GR.14 screen — produced PENH
values around $96 to $9C, but always PENV values of $40. Pickup range was narrow side-to-side, in a circle
about 4mm wide, but the light pen could detect the beam as far as 10cm away.

Pickup range

The light pen has a relatively narrow opening about 4mm wide for the light sensor to detect the beam. For a
single $0E luma lo-res point, this results in the light pen only picking up the point within around an area of that
diameter when the point is close to the screen, and still only within very narrow angles when held away from the
screen. For a 13" monitor like the 1702, this already limits pickup to about 1-2 color clocks, and for a larger
monitor it is even more precise.

The CX-75 can detect the beam from surprisingly far away, as far as 10cm with a full white pixel, though this
range is somewhat diminished with dimmer pixels. On the test system, the light pen could not pick up a $02
background, and at $04, its range was only about 1.5cm. At $06, this increased to around 4cm.

Reported positions

The light pen is generally quite accurate and stable in vertical positions, but much less so horizontally. In the test
environment, a white lores pixel in the center of the screen — hardware horizontal and vertical position $80,
position (80,80) on a GR.14 screen — produced PENH values around $96 to $9C, but always PENV values of
$40.

The offset in horizontal positions reported in PENH stems from several factors, including an offset between the
internal horizontal position counter within ANTIC and the horizontal positions used by GTIA, and the delays from
when pixels are output in the video signal by GTIA, displayed by the TV, sensed by the light pen, and finally light
pen input latching delays in ANTIC.

Horizontal position jitter

It is normal for horizontal positions to vary by +1 due to noise. However, on XL/XE systems, the CX-75
commonly displays much larger errors of as much as ~6 color clocks. Furthermore, the noise is not random, but
position dependent — it is spiky but somewhat deterministic when the light pen is held steady.

The additional positional noise is due to ringing on the trigger line causing glitches on the ANTIC LP input. Figure
11 shows an example. CH1 (yellow) shows the raw trigger input from the light pen, CH3 (purple) shows the GTIA
trigger input after the filter, and CH2 (cyan) shows the final light pen input to ANTIC. In this example, the glitches
are approximately 0.7us and 1.4pus after the original falling edge. At 280ns period color clock, this corresponds to
offsets of +2.5 and +5.0 counts. Under normal circumstances, the last edge would always take precedence.
However, the glitches are short enough that ANTIC's triggering is unreliable, causing the PENH/V registers to
update inconsistently depending on the offset of the glitches relative to the system clock. These glitches don’t
occur on an 800 system where the input circuitry is more tolerant.
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Figure 11: CX-75 triggering glitch on NTSC 800XL

Detected colors

For the light pen to detect the beam, the image must be bright enough for the beam to trip the light sensor. A full-
bright screen is not necessary, but very dark areas of the screen can fail to trigger the sensor. On the test
system, grayscale areas were picked up as dim as $04, but with low sensitivity/range, somewhat improved range
at $06, and mostly full range at $08 and above. On the other hand, colors were picked up more readily, as low as
luma 2. One theory for this is that colors cause one of the three color beams to be brighter than the average,
which is then more easily picked up by the light pen.

Note that the exact thresholds are affected by the brightness and contrast settings of the display. Raising the
brightness or contrast will make darker colors easier to pick up. If the brightness is raised enough that the black
level rises, even black ($00) will work.

Trigger timing

As the beam is sensed by the light sensor, the light pen asserts the joystick trigger signal on the controller port
for a short period of time. For the CX-75, the width of this pulse is mostly uniform, varying from about 9.1-9.8 ps
depending on intensity, or about 32-35 color clocks. This is always enough to trigger ANTIC's light pen input and
update the PENH and PENV registers, but is difficult to detect reliably with the 6502. It can be detected by a tight
polling loop, but programs that need to detect when the light pen is triggering usually need to enable trigger
latching on GTIA.

Measured delays related to light pen timing include:

- ~800 ns from the rising/falling edge of AN2 between GTIA/ANTIC to the corresponding change in the
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composite video output.

« Very approximately 9-13 us from the start of the pixel in the video output to the leading edge of the
joystick trigger pulse from the light pen.

Pen switch

The CX-75 also has a switch activated by pushing in the noise of the pen at the front. The switch is somewhat
loose and easily pushed with its weak spring. Pressing in the tip asserts the joystick up signal, changing bit 0 or
4 of PORTA/B from 1 to 0 while the tip is depressed.

An oddify of the pen switch is that the a trigger pulse is also sent when the pen switch is depressed or released.
This appears to be due to bounce noise from the switch and can result in multiple trigger pulses over hundreds
of microseconds, especially on switch activation. This results in random positions being latched into the
PENH/PENV registers, which must be ignored.

7.6 Stack Lightpen

The Stack Lightpen is a variant of lightpen that was created by Stack Computer Service Ltd. in England. It works
with the same basic mechanism as other Atari light pens, but with a slightly different and incompatible wiring
setup.

In a CX-75 compatible light pen, the pen switch is connected to joystick up (PORTA bit 0/4) with negative
polarity. The Stack Lightpen, on the other hand, connects its pen switch to joystick left (PORTA bit 2/6) with
positive polarity, where 1 = depressed.

Some programs designed for the Stack Lightpen are hardcoded to work only with the light pen in port 4,
presumably because the 400 computer only supports a light pen in that port.

7.7 CX-85 Numerical Keypad

The Atari CX-85 Numerical Keypad is a 17 key pad that attaches via the joystick port. It sends six signals
through the joystick direction, trigger, and paddle B lines. The corresponding four bits in PORTA are set for each
key as follows:

ESCAPE 7 8 9 -
1100 0101 | 0110 | 0111 1111
NO 4 5 6 +/[ENTER
0100 0001 | 0010 | 0011 1110
DELETE 1 2 3
0000 1001 | 1010 | 1011
YES 0 .
1000 1100 1101

Table 19: CX-85 keypad to PORTA bit pattern mapping

The paddle B input (POT1/3/5/7) is used to distinguish the ESCAPE key from the 0 key, which both share the
1100 encoding. When ESCAPE is pressed, the paddle line is negated and the POTx register reads 228; for any
other key it is asserted and POTx reads 1.

The trigger is asserted (0) as long as any key is pressed; when this happens, the joystick direction bits in PORTA
and the pot line indicate the key that was pressed. The PORTA and POTx values will persist after the key is
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released, or even if other keys are pressed while the first key is held down. If the first key is then released, the
keypad may begin reporting one of the other keys that are still pressed, although this is not always the case.

7.8 CX-20 Driving Controller

The CX-20 Driving Controller is similar to a paddle controller except there is only one connected per port, the
rotary knob can be rotated indefinitely in either direction, and the resolution is much lower.

The trigger of the driving controller is connected the same way as a joystick trigger and is reflected in TRIGO-3.
Rotations are transmitted over the up/down joystick lines as a two-bit Gray code which changes once for every
sixteenth of a rotation and cycles every quarter rotation. For a left rotation, the bits 1/0 or 5/4 in PORTA/PORTB
step 00-01-11-10-00, and for a right rotation, they step 00-10-11-01-00. This is similar to the X axis of an ST
mouse, but at a much lower rate.

7.9 CX-21/23/50 Keyboard Controller

The CX-21, CX-23, and CX-50 keyboard controllers have different physical shapes but the same key layout and
signal interface. They connect a four row, three column keypad to a joystick port using a combination of the
joystick and paddle lines.

Signals

The four rows of the keyboard matrix are connected to the joystick lines and the three columns are connected to
the paddle and trigger lines:

1 2 3 Up
4 5 6 Down
7 8 9 Left
* 0 # Right

Paddle B  Paddle A Trigger

Table 20: Keyboard Controller key matrix

To read the matrix, the four joystick direction signals are configured as outputs and brought low one at a time.
The two paddle inputs and trigger are then read to sense the columns. The trigger input will be sensed as a 1 if
its column is inactive and O if it is active; paddle inputs will tend to read ~1-2 for inactive and ~228 for active.

Fast pot scan mode

Unlike paddles, which only pull up the paddle lines, the keyboard controller also grounds them. This means that
fast pot scan mode can be directly used with the Keyboard Controller without having to discharge the capacitors
with slow scan. After enabling fast scan, the paddle inputs can be read directly by strobing POTGO and then
reading ALLPOT within 228 cycles. This permits reading the Keyboard Controller much faster than once every 3-
4 frames.

The POTO-7 registers are still not valid in this configuration by default since they do not update if the capacitors
are already above charging threshold when the scan starts. They will read $ES if a column is activated, but may
retain their previous value otherwise. This limitation can be avoided by strobing POTGO in slow scan and then
dynamically switching to fast scan, but this is inferior to using ALLPOT.
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Multiple key presses

As is usually the case for a keyboard matrix without diodes, pressing multiple keys on a Keyboard Controller can
cause phantom keys to appear in the matrix. Two keys can always be resolved independently without phantoms;
three or more will cause phantoms if they occupy a shared row and column. For instance, pressing 1, 2, and 4 is
indistinguishable from also having 5 pressed.

Pressing multiple keys also has the effect of reducing the paddle position values reported by POKEY in the
POTO-7 registers for non-activated keys. The effect is hardly noticeable in normal pot scan mode where the
counts drop from 2-3 to 1-2, but is more noticeable in fast pot mode where readings can decline from around
$BO to as low as $60. This occurs because depressed keys on inactive rows supply additional current from high
row lines to the paddle inputs on active rows through the column lines. This will occur independently for each
column unless the columns are connected by two keys depressed on both paddle columns of the same row.

7.10 XEPS8O0 Interface Module

The XEPS80 Interface Module is a device that plugs into joystick port 1 or 2 and provides a separate 80-column,
monochrome text display. It also has limited graphics capability.

Communication protocol

Data is transferred to and from the XEP80 via a serial protocol at a baud rate of 15.625KHz. This is designed to
be close to the horizontal scan rate of 15.7KHz on the host computer. Communication from the host to the
XEP80 is by means of the joystick up line (bit 0 or 4 of PORTA/B) and communication from the XEP80 to the
host is via the joystick down line (bit 1 or 5 of PORTA/B).

The data format is one start bit, followed by nine data bits starting with the LSB, and ending with one stop bit.
Bytes sent with bit 8=0 are characters to print, while bytes sent with bit 8=1 are commands.

When sending data back to the host, the XEP80 actually uses two stop bits, giving the host one bit cell of time
between the bytes.

Cursor updates

Whenever a character is read or written, the XEP80 sends back update bytes to tell the computer that the
operation has completed and the new location of the cursor. All cursor update bytes have bit 8 set. The cursor
update consists of one to three bytes of the following types:

e $100-150: New horizontal position, with no following vertical position byte.
e $180-1DO0: New horizontal position, to be followed by a new vertical position byte.
e $1EO-1FF: New vertical position.

The horizontal position update only indicates positions 0-80, with 80 being returned for any positions to the right
of that. A horizontal position query command must be issued to retrieve the true horizontal position beyond
column 80.

If the cursor doesn't change, such as if an escape sequence is started ($1B), a dummy horizontal update is sent.
Burst mode

The XEP80 can be placed into a burst mode where cursor updates are suppressed for faster text output.
Instead, the XEP80 simply pulls its output low while it is busy and raises it when it is done. This avoids the delay
of waiting for the cursor update bytes, at the cost of the computer needing to manually query the cursor position
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when needed.

There is a short delay between when the XEP80 receives a character and when it can assert the busy output. As
a result, the host must wait 90us before checking busy state.* This is about 160 machine cycles.

Burst mode is automatically activated in pixel graphics or printer mode.
Left and right margins

During put or get character operations, the cursor is constrained to be within the left and right margins,
inclusively. Whenever the cursor advances beyond the right margin, it is moved to the left margin on the next
line. By default, the left and right margins are set to columns 0 and 79.

Note that while the cursor is restricted to within the margins, vertical scroll operations always move entire rows
including text outside of the margins. Line clear operations, on the other hand, clear 80 columns starting at the
scroll position.

Logical lines

The first 24 lines of the screen are organized as a series of logical lines, where each logical line contains one or
more contiguous physical lines. Physical lines are grouped into a logical line when characters are printed past
the right margin at the end of a logical line.

There are two differences between the logical line handling in the XL/XE OS's screen editor and the XEP80.
First, the OS screen editor allows logical lines to contain a maximum of three physical lines (120 characters),
while there is no limit in the XEP80 and the entire screen can be one big logical line. Second, instead of using an
external bitfield to track logical line boundaries, the XEP8O0 tracks logical line groupings by means of EOLs in the
frame buffer. The end of a logical line is marked by an EOL at the right margin column.

End of line anomaly

Because of the use of EOLs in the frame buffer to track logical lines, the XEP80 can track spaces at the end of a
logical line, unlike the standard E: driver. Compounding this issue is that the standard XEP80 E: handler will
return these spaces and the XEP80 firmware will replace EOLs with spaces when moving the cursor for the
move right ($1F), backspace ($7A), and tab ($7F) special characters. This can result in unwanted effects like
splicing a large number of spaces at the end of a DATA statement in a BASIC program. EOLs cannot be
reinserted into a logical line, so this can only be fixed by deleting spaces and shortening the line.

Status row

The 25" row (row 24) is special as it is the status row, for which much functionality is disabled. When the cursor
is in the status row, only the escape and clear special characters are processed and all other characters are
printed. Advancing past the right margin wraps back to the left margin within the status row.*

Video timing

The XEP80 is notorious for extreme amounts of overscan in text mode that can make the outer portions of the
display invisible to the user. The primary reason for this is the use of a 10 row character cell with 25 character
rows, giving 250 active display scan lines out of 262 total in a non-interlaced NTSC display. This exceeds the
243 scan lines per field normally used for a fully overscanned display and far exceeds the approximately 192

[37] [ATA87]p.11

[38] [ATA87] p.5 has a warning about a lockup if the cursor is moved to the status row while BASIC is at its READY prompt. This is an issue
with the handler software — it tries to read characters until it finds an EOL, and due to the special behavior in the status row, it can end
up looping infinitely.
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scan line region typically considered title-safe, making the top and bottom rows of the screen hard to see on
regularly adjusted displays. The situation is not much better in PAL, where the character cell height is increased
to 12 rows, giving 300 active scan lines.

Another issue with the XEP80's video output is that it is significantly out of spec. The horizontal scan rate is
16.3KHz in 60Hz text mode and 16.1KHz in 60Hz graphics mode. The number of scan lines is also off, with the
XEP80 producing 272 scan lines in 60Hz text, 269 scan lines in 60Hz graphics, 327 scan lines in 50Hz text, 323
scan lines in 50Hz graphics. The vertical scan rate is generally much better, but the poor horizontal scan rate
and incorrect scan line count prevent some modern TVs from locking onto the XEP80's display and will show a
vertically rolling picture. It is possible to reprogram the XEP80 for closer 60Hz timings at least by use of
undocumented commands (50Hz timings are more awkward given the NS405's limitations).

Video memory layout

8KB of video memory is present in the XEP80 for text, graphics, and auxiliary data. In text mode, this is
organized as 25 rows of 256 bytes each for easy addressing, from $0000-19FF. This allows for horizontally
scrolling the 80x25 display window over a 256x25 virtual text screen. While each row is contiguous, the XEP80
will display them out of order as scrolling is performed by swapping display row pointers rather than moving data
in memory.

In addition to the text display, video memory is also used for tracking tab stops and queued print data. Memory at
$1A00-1AFF contains flags for tab stops at each column, and $1B00-1FFF is used for the print buffer.

Internal memory layout

64 bytes of internal memory are also contained within the NS405 processor and contain working registers, the
stack, and variables. These bytes are normally managed for internal use by the XEP80, but may be written using
command $E5.

Of the internal memory locations, the most interesting are addresses $20-38, which contain the high byte of the
starting address for each display row. Bits 0-4 are used for memory addressing, while bit 5 selects one of the two
ATASCII character sets in the external character ROM and bit 6 bypasses the external character ROM entirely
for pixel graphics or the internal character set. The row pointers are only reinitialized by power-on or a master
reset ($C2) command; afterward they are swapped around as needed during scroll and insert/delete operations.

Character display attributes

Two attribute latch registers determine the display characteristics of characters on screen. Attribute latch 0 is
used when character data bit 7 = 0 while attribute latch 1 is used when character data bit 7 = 1. This mostly
corresponds to characters $00-7F and $80-FF, except when the ATASCII character sets are enabled in which
case $9B (EOL) also uses attribute latch 0.* Normally both attribute latches are set to $FF, which disables all
special attributes.

The attribute registers can be set by means of commands $F4 and $F5, which each set one of the attribute
latches to the value of the last character written. All bits in the attribute byte have inverted behavior such that
they must be set to 0 to enable the feature:

o Bit 0 (Reverse video): Inverts the entire character cell.

e Bit 1 (Half intensity): This bit sets characters to half-intensity. This feature is not hooked up in the

[39] This bizarre EOL anomaly is due to the way external character sets are implemented in the NS405: attribute latch selection is based
on bit 7 of the data coming into the NS405, and when the ATASCII character sets are enabled this actually comes from bit 7 of the
character data and not the character name. The external character ROM is set up to emit bit 7 = 0 for $00-7F and $9B and bit 7 = 1 for
$80-9A and $9C-FF. When the external character ROM is bypassed, the NS405 sees the actual character names and so the split
between the latches is the more normal $00-7F / $80-FF.
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XEP80, so it does nothing.

e Bit 2 (Blink): Causes the character to blink on and off by alternately blanking character data. This
happens at half the cursor blink rate, normally toggling every 32 frames. If reverse video is also enabled
on this character and the reverse video blink field option is set in the VCR (bit 0), the entire character cell
is inverted instead.

o Bit 3 (Double height): Stretches a character vertically to double its normal height. When active, the
blanking function is disabled and bit 6 is repurposed as the character half bit, where 0 selects the lower
half and 1 selects the upper half. Double height mode is only functional with the internal character set or
block graphics and does not work with the ATASCII character sets.

o Bit 4 (Double width): Stretches a character horizontally to double its normal width, covering both the
current and next character cells. The next character and its attribute are ignored.

e Bit5 (Underline): ORs an underline into the character graphic.
e Bit 6 (Blank): Blanks out all character data.

o Bit 7 (Block graphics): Replaces the character from the character set with block graphics instead,
based on bits 0-6 of the character. This mode only works with the internal graphics set; it produces
garbage with the ATASCII character sets due to the character graphic data being converted to block
graphics instead of the original character.

The order of operations for attributes is block graphics, double width + height, blank + blink, underline, reverse
video blink field, reverse video, and then finally global reverse video.

Character sets

Three character sets are available with the XEP80, two of which correspond to the standard ATASCII and
international ATASCII character sets, while the third is an internal character set within the NS405. The ATASCII
and international ATASCII character sets can be mixed on a line-by-line basis, although this is not normally
exposed and only available by writing directly to internal memory to toggle bit 5 of character row address bytes.

The two ATASCII character sets are both 256 characters in size, with the $80-FF characters being inverted
versions of $00-7F. Thus, $80-FF produce inverted character graphics even though the attribute latches are not
set for reverse video. The exception is the inverted escape or EOL character $9B, which is blanked in both
character sets to keep the EOLs in the framebuffer from showing up.

The internal character set contains only 128 characters and so does not show inverse video unless the attribute
latches are changed. Because it does not contain the hacked-in blank for the EOL character, enabling the
internal character set causes blank areas of the display to show & instead.

Block graphics

Clearing bit 7 of one of the attribute latches causes the corresponding half of the character set to display block
graphics. This divides the character cell into a 3x3 grid with bits 0-6 of the character set lighting the sub-blocks.
Since there are 9 sub-blocks and only 7 bits, bits 0 and 5 control two sub-blocks each:

0 1 0
2 3 4
5 6 5

Table 21: Character bit to block graphics mapping
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Block graphics normally only work properly with the internal character set. The reason is that it requires the
NS405 to directly see the original character bytes, and when the ATASCII character sets are enabled those bytes
are translated through the character ROM. The result is that each row of ATASCII character graphics data is
interpreted as block graphics per the layout above, resulting in garbled block graphics. Enabling the internal
character set disables the external character ROM and allows block graphics to work correctly. It can also be
made to work with the ATASCII character sets by writing into internal memory to set bit 6 on character row
address bytes to bypass the external character ROM for those rows.

Pixel graphics

Command $99 switches the XEP80 from text mode to pixel graphics. In pixel graphics mode, all 8K of on-board
memory is dedicated to a 320x200 monochrome display, similar to GRAPHICS 8. The pixel aspect ratio,
however, is much narrower than a GR.8 display, as the pixels are output with a dot clock of 12MHz instead of
7.14MHz. This produces a narrower than square display on NTSC.

In graphics mode, the firmware writes normal bytes received directly to the cursor location, ignoring all normal
special character processing logic. The cursor address is automatically incremented, but not wrapped within the
display, so it cycles through all VRAM including non-displayed memory. Since the NS405 displays bits LSB-first
instead of MSB-first as ANTIC does, the XEP80 firmware reverses the order of bits when writing bytes into
display memory in graphics mode.

Internally, the graphics display is stored in on-board memory as contiguous rows at $0000-1F3F. However, the
external character set ROMs must be bypassed, so the NS405 is set to address $4000-5F3F. If the display
pointers are modified to within $0000-3FFF or $8000-BFFF, the display data will be translated through one of the
ATASCII character generators, using a row height of 10 scan lines. However, due to the bit reversal done during
writes, this requires sending the XEP80 bit reversed ATASCII so that the firmware un-reverses it to the correct
values on write. Also, for some reason, the row counter is incremented after the fifth byte in each scan line
instead of at the end.

The standard cursor positioning commands can be used in graphics mode, but since the text row pointers are
not reinitialized by the command to enter graphics mode, vertical positioning is indeterminate unless a master
reset is issued first. The standard cursor commands also only allow positioning up to $18FF. An alternative is the
undocumented $E2 command, but that requires writing two bytes to the cursor address. One workaround is to
modify BEGD/ENDD/HOME to warp the display around the status row location at $1800-18FF and then use the
$98 command to move the cursor to the status row before issuing commands that require the last character or
extra byte values.

Pixel graphics mode oddities

The cursor is still active in pixel graphics mode, although it is only a single scan line tall. Cursor blinking is
disabled when pixel graphics mode is entered, but the cursor on/off state is preserved. There is a bug in the
XEPS80 that corrupts the display if the Cursor On or Cursor On, Blinking commands are issued in pixel graphics
mode, due to resetting VCR back to text mode values.

The attribute latches are still also valid in pixel graphics. Bit 7 of display memory, or bit 0 in data written from the
computer, selects the attribute latch (1 = latch B). There is no $9B anomaly. Reverse video, blink, double width,
underline, and blank attributes are active, while half intensity, double height, and graphics attributes are
ignored.* The Set Graphics command ($99) does not reset the attribute latches, so they must be manually reset
back to $FF for proper pixel graphics display if they have been previously modified, unless attribute activation is
actually desired.

[40] The NS405 manual says that attribute-based reverse video is disabled in pixel graphics mode, but this appears to be untrue for the
XEP80's pixel graphics configuration — resetting bit O of either attribute latch will invert bytes mapped to that latch, same as in text
mode.

Chapter 7 - Accessories 159



Altirra Hardware Reference Manual Created by Avery Lee

Hardware scrolling

In text mode, the LSB of the address for each display row other than the status row is specified by command
$DC. This scrolls the display horizontally without requiring copying of display data, and is thus fast and non-
destructive. Similarly, the firmware uses the NS405's table lookup mode to quickly scroll vertically, since it allows
doing so by swapping row address pointers.

Pixel graphics mode supports both horizontal and vertical scrolling, although doing so requires several
undocumented firmware commands. The BEGD and ENDD registers can be modified to specify a wrapping
region, and the HOME register to set a starting address within that region. This allows horizontal scrolling on a
byte basis and vertical scrolling on a scan line basis. Although the XEP80 only has 8K of display memory, the
address registers on the NS405 are full 16 bit; the display pointer will wrap around the 8K memory and cross the
boundaries for the different external character set generator modes specified by A13 and A14.

Unlike text mode, where the status row is a single row, in pixel graphics mode the status row is extended to a
non-scrollable region of arbitrary row height. Timing chain register 8 specifies the row on which this region
begins, with a starting address specified by SROW, after which rows are displayed sequentially.

Warning

There appears to be a bug in the NS405 with the non-scrollable region such that the display address is
reset to SROW at the end of each scan line in the row specified by TC[8] instead of only at the end of the
last scan line. The result is that with a character height of 10 scan lines, scan lines 1-9 of that row are
repeated versions of the beginning scan line of the non-scrollable region pointed to by SROW.

Baud rate modification

It is possible to reprogram the XEP8O0 to run at a different baud rate than the default 15.6 Kbaud rate by means
of the undocumented $FA-FC commands, which alter the UART parameters. The most useful combinations are
asymmetrical 31.5Kbaud transmit / 15.6 Kbaud receive and symmetrical 31.5K transmit/receive.

The main limitation on the usable baud rate is the slew rate of the joystick control lines, affected greatly by RLC
network protection circuits on the joystick ports. PIA port A uses single-ended drivers and this results in slow 0-
>1 transitions; the drive capability varies by chip and some variants of the 6521 are not able to transition to 1 fast
enough with regular transmit timing for the XEP80 to see a 1 bit after a 0 bit. This can be fixed with
precompensation to emit 1 bits earlier to give the output enough time to rise above threshold. However, the
generally slow rise time makes faster speeds like 63.5KHz impossible.

Horizontal position and row advance anomaly

By default, the XEP80 firmware programs the NS405 to emit the leading edge of horizontal sync close to the
start of horizontal blank, about 3.4 characters (2.0us) after the last displayed character. This places the 80-
character display about five characters right of ideal centered position, resulting in some columns on the right
being cut off on some displays. The NS405 timing chain can be reprogrammed to adjust the horizontal sync
position and recenter the display. However, hardware design issues in the NS405 and XEP80 cause an artifact
that prevent this from working.

The NS405 requires an external row counter when an external character set is used, since it does not output its
own internal row counter. A scan line reset signal is emitted to reset this counter, and it is incremented every
horizontal sync to advanced to the next row within the character cell. Normally, this happens within a couple of
character cells of horizontal blank, cleanly between rows.

When horizontal sync is moved later in HBLANK, however, an artifact appears where the first few characters are
displayed one character row lower than intended. The reason for this is a four-byte fetch FIFO within the NS405
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that begins prefetching a few character cells after horizontal blank begins. With the default HSBR setting of $52,
this occurs after the row counter has incremented, but raising HSBR results in the FIFO being able to fetch some
data through the character ROM before HSYNC starts and the row counter increments. This happens when the
HSBR > HBR + 3. The last affected character flickers due to one-character variance in FIFO timing.

It is possible to work around this issue raising HBR to extend the displayed area and delay the start of horizontal
blank until closer to horizontal sync. The additional displayed characters are usually blank unless horizonal
scrolling has been used, which is uncommon.

Initial state

The power-on or post-reset state of the XEP80 is as follows:
e 60Hz text mode
e Attribute latches set to $FF
e List mode disabled, escape not active
e Left margin at 0, right margin at 79
e RAM cleared to EOL ($9B)

o Tabs set every 8 characters starting at the 8" column (column 7), and also at column 2

Special characters

Move up ($1C)

Moves the cursor up one physical line, wrapping from row 0 to row 23.

Move down ($1D)

Moves the cursor down one physical line, wrapping from row 23 to row 0.

Move left ($1E)

Moves the cursor left, wrapping from the left margin to the right margin within the same physical line.
Move right ($1F)

Moves the cursor right, wrapping from the right margin to the left margin within the same physical line. An EOL is
replaced with a space if it is the character under the cursor prior to moving right.

Backspace ($7A)

Moves left one character within the current logical line and replaces the character at the new position with a
space. If the cursor is at the left margin, it will move to the right margin on the previous line if that is part of the
same logical line (no EOL at right margin); otherwise, the backspace operation is ignored.

Tab ($7F)

Advances the cursor right one character until the next tab stop is reached, replacing EOLs with spaces in
positions that it leaves. This will splice logical lines together without inserting physical lines if the end of a logical
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line is breached.
Delete line ($9C)

Deletes the logical line starting at the current vertical position. For instance, if the current logical line is three
lines tall, three physical lines will be deleted.

The XEP80's behavior differs from the standard E: handler when the cursor is in the middle of a logical line. The
standard E: handler will delete all physical lines comprising the logical line that the cursor is in, while the XEP80
will only delete physical lines starting from the current line. When the delete line command is sent when the
cursor is in second physical line of a three line tall logical line, the XEP80 will only delete the second and third
physical lines. This leaves the first line behind and also splices it with the next logical line.

Clear tab ($9E) | Set tab ($9F)

Sets or clears the current horizontal position as a tab position. Neither the framebuffer nor the cursor position are
modified.

Command set

All commands are sent with bit 8 set.

Set Horizontal Cursor Position ($00-4F)

Moves the cursor to the specified horizontal position.

Set Horizontal Cursor Position High Nibble ($50-5F)

Modifies the high four bits of the horizontal cursor position to $0x-Fx. The lower four bits are not modified.
Set Left Margin ($60-6F)

Sets the left margin to positions 0-15.

Set Left Margin High Nibble ($70-7F)

Sets the high bits of the left margin position to $0x-Fx. The lower four bits are not modified.
Set Vertical Cursor Position ($80-97)

Moves the cursor to the specified vertical position.

Set Cursor to Status Row ($98)

Moves the cursor to row 24, the status row.

Set Graphics to 60Hz ($99)

Reinitializes the XEP80 in 320x200 pixel graphics mode at 60Hz refresh rate. The cursor is reset to the top-left
byte in the display, cursor blinking is turned off, character blink mode is set to foreground only, and the display
polarity is set to white-on-black.

Chapter 7 - Accessories 162



Altirra Hardware Reference Manual Created by Avery Lee

This command sets HOME=$4000, BEGD=%$4000, ENDD=$FFFF, and CURS=$4000.
Modify Graphics to 50Hz ($9A)

Changes video timing parameters to display pixel graphics at 50Hz refresh. This only works properly if the
XEP8O is already in graphics mode.

Set Right Margin ($A0-AF)

Sets the right margin to positions 64-79 ($40-4F).

Set Right Margin High Nibble ($B0-BF)

Sets the upper four bits of the right margin position to $0x-Fx. The lower four bits are not modified.
Read Char and Advance ($C0)

Reads and returns the character under the current cursor position and then advances to the next position. This
will return EOLs without translating them to spaces. The cursor wraps within the margins and either stays in the
status row or advances to the next row if not in the status row. If the cursor goes beyond row 23, the screen will
scroll.

A cursor u